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Resumo

A área de desenvolvimento de software tem apresentado um grande crescimento nos últi-
mos anos, havendo mais produtos a serem criados a cada dia. Com este crescimento, uma
das maiores preocupações das organizações de desenvolvimento software é a garantia de
qualidade do software produzido [46, 30]. As organizações estão sobre constante pressão
para entregar produtos de excelente qualidade em prazos reduzidos e a baixos custos. Se
o software for entregue ao cliente com erros e não realizar o que é suposto, a reputação
da empresa pode ser posta em causa e a confiança dos clientes nos produtos produzidos
diminuirá, levando-os a procurar outras empresas concorrentes. Assim, dados os elevados
custos de encontrar erros e vulnerabilidades mais tarde no processo de desenvolvimento,
os programadores e as organizações tentam detetar e corrigir os problemas o mais cedo
possível quando são mais baratos e fáceis de tratar [66]. Para que estes erros sejam deteta-
dos cedo, é necessário aplicar métodos de verificação de software que permitam localizar
erros e que deem aos utilizadores uma maior confiança na qualidade do software criado.

Um dos métodos de verificação mais usados na atualidade advém dos sistemas de ti-
pos implementados em várias linguagens de programação modernas. Com os sistemas de
tipos integrados na linguagem, apenas valores que pertencem ao tipo esperado são aceites
no programa, sendo que esta verificação é feita em tempo de compilação do programa.
Uma vez que os sistemas de tipos estão integrados na linguagem, até podem passar des-
percebidos como forma de verificação, uma vez que, para um programador, são parte
natural da implementação.

Contudo, estes sistemas de tipos por vezes não são suficientes para garantir o correto
comportamento do programa. Com esta motivação, os tipos refinados foram propostos
como um passo incremental nos sistemas de tipos tradicionais, permitindo que os tipos
básicos de uma linguagem sejam mais específicos com o uso de predicados lógicos. As-
sim, os tipos refinados permitem restringir os valores aceites nos diferentes tipos básicos
mantendo a verificação integrada na linguagem de programação. Um tipo refinado pode
ser representado por {x : B|p}, onde x é uma variável com o tipo básico B refinado pelo
predicado p. Um exemplo de um tipo refinado que identifica os números inteiros positivos
pode ser representado por {x : int|x > 0}.

O mecanismo de tipos refinados, apesar de parecer útil, ainda não se tornou popular
na comunidade de desenvolvimento de software. Podem existem várias razões para tal,
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sendo que uma das possibilidades é a baixa popularidade, na industria, das primeiras
linguagens que tiveram implementações de tipos refinados (ex.: ML [24], Haskell [61]).
Outra possível explicação vem do significativo aumento do esforço para o programador
para perceber e escrever as especificações nos refinamentos.

Este trabalho propõe a utilização de tipos refinados integrados em Java, uma das lin-
guagens de programação mais populares no mundo, com foco na usabilidade e com o
objetivo de promover o uso global de tipos refinados como técnica de verificação de soft-
ware.

Para integrar os refinamentos em Java, propomos o uso de anotações (como @Refinement

↪→ ) onde se insere a linguagem dos refinamentos como uma string. A linguagem de re-
finamentos inclui recursos para modelar a especificação de variáveis, métodos, atributos
de classe e estados de classes.

Para que os utilizadores não precisem de aprender uma nova linguagem para os refi-
namentos, esta deve ser o mais parecida possível de Java. Assim, criámos um inquérito
para averiguar a sintaxe preferida de programadores de Java para a sintaxe dos refinamen-
tos. Este inquérito continha duas ou três opções de sintaxes para adição de refinamentos
em variáveis, métodos e atributos de classe, opções estas que os participantes avaliaram
em termos de preferência. No total o inquérito obteve 50 respostas de programadores
familiares com Java, e os resultados foram utilizados na construção da gramática para a
linguagem dos refinamentos.

Os refinamentos para modelar classes são introduzidos com uma nova especificação
que permite modelar o estado dos objetos da classe. Para modelar classes, é possível criar
múltiplos conjuntos de estados e propriedades que podem ser usados na especificação dos
métodos da classe dentro do refinamento @StateRefinement(from="predicate", to="

↪→ predicate"). Usando esta anotação, os métodos da classe especificam qual o estado
em que os objetos devem estar para invocar o método (expressado no argumento from

↪→ ) e qual o estado dos objetos quando o método terminar (expressado no argumento
to). Desta forma, a especificação é capaz de impor protocolos em classes e modelar com
sucesso máquinas de estado em classes Java como, por exemplo, na java.net.Socket.

A verificação dos refinamentos em Java é feita através de regras de verificação de ti-
pos, que criámos para esta extensão, e da tradução das relações de subtipos para condições
de verificação (VCs). Estas condições são enviadas para um SMT Solver que as verifica
automaticamente e indica se todos os refinamentos são respeitados ou se algum deles não
é possível de provar. Neste último caso, uma mensagem de erro relacionada com o tipo
refinado é mostrada ao utilizador.

As regras de verificação foram implementadas num protótipo designado por Liquid-
Java, que representa a extensão de Java para tipos líquidos (o subconjunto decidível dos
tipos refinados). Este protótipo foi também integrado numa extensão para o editor de có-
digo Visual Studio Code, de modo a melhorar a usabilidade do sistema LiquidJava. Com
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a utilização desta extensão, os utilizadores obtêm os erros e relatórios dos mesmos em
tempo real enquanto desenvolvem os programas, com as linhas erradas são sublinhadas a
vermelho e acompanhadas de mensagens de erro.

Para avaliar a extensão LiquidJava, desenvolvemos um estudo com utilizadores fo-
cado na usabilidade da extensão como uma ferramenta de verificação de software. Assim,
conduzimos um estudo com 30 participantes familiares com Java e pedimos-lhes que re-
alizassem tarefas relacionadas com a interpretação de refinamentos, o uso de LiquidJava
para detetar e tratar erros, e a adição de refinamentos em código Java. O estudo mostrou
que os refinamentos em variáveis e métodos são muito intuitivos dado que 86% dos par-
ticipantes conseguiu utilizar os refinamentos corretamente sem nunca ter uma introdução
ao tópico. Embora os refinamentos em classes se tenham mostrado mais difíceis de en-
tender sem uma introdução inicial (apenas 46% dos participantes os usou corretamente),
após um vídeo de 4 minutos e acesso a um website com exemplos, 100% dos participantes
conseguiu anotar o protocolo com refinamentos na classe corretamente. Quanto à dete-
ção e correção de erros usando Java e LiquidJava, o exercício com melhores resultados
usando LiquidJava aumentou a localização do erro por 93% e a correção por 47% (dado
que os restantes 53% se aproximaram da resolução, mas não obtiveram uma versão com-
pletamente correta) quando comparado com as repostas em Java. Este exercício usava o
protocolo da classe java.net.Socket, o que mostra que o LiquidJava pode ser mais útil
quando aplicado a classes e protocolos menos conhecidos, reduzindo o tempo passado
na localização dos erros. Finalmente, o estudo mostrou que os participantes acharam fá-
cil a adição de refinamentos em programas Java e todos declararam estar abertos a usar
LiquidJava nos seus projetos.

No futuro, é esperado que o LiquidJava evolua para ter uma verificação completa da
linguagem Java, com uma melhor usabilidade dentro de editores de código e mensagens
de erro mais explícitas. Assim, prevê-se que o LiquidJava possa ser utilizado em produtos
de software crítico e em projetos de âmbito geral de modo a melhorar a qualidade do
código produzido.

Palavras-chave: Tipos Refinados, Verificação de Software, Linguagens de
Programação, Java
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Abstract

Software development is an area with continued growth over the years, with more ap-
plications being produced every day. As software demand grows, so does the demand
for software reliability. Bugs and vulnerabilities that are found earlier during the develop-
ment lifecycle are easier and cheaper to fix, whereas bugs found in production are difficult
and expensive to address and may have dire consequences. Thus, it is important to use
software verification techniques to improve software quality.

Type systems are one of the most popular verification techniques since they help pre-
vent bugs early in the development lifecycle. Refinement types are more powerful than
traditional type systems since they extend a type system with predicates over the existing
types, detecting more classes of bugs. However, despite the perceived utility of refinement
types, they have not yet been adopted by mainstream developers.

This work aims to promote wide usage of refinement types by adding them to Java,
one of the most popular programming languages in the world, with a focus on usability.
Thus, we defined usability requirements and followed them in the design of the additional
type system with refinements. To promote accessibility, we conducted a series of devel-
oper surveys to design the syntax of refinements for variables, methods and classes. We
propose an approach of using refinements in classes to model type state using state sets
and ghost properties. Finally, we created an implementation of LiquidJava and integrated
it into an IDE so developers can use the verification information while they are develop-
ing the code. To evaluate the prototype’s usability, we conducted a research study with
30 Java developers, concluding that users intend to use LiquidJava and that it helped find
more bugs and debug faster.

Keywords: Refinement Types, Software Verification, Programming Languages, Java
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Chapter 1

Introduction

This thesis proposes the integration of refinement types in the Java language. To this end,
the current chapter introduces the motivation and relevance of this work (Section 1.1),
defines its goals (Section 1.2) and, finally, describes the structure of the remainder of the
document (Section 1.3).

1.1 Motivation

Nowadays, one of the major concerns in software development is guaranteeing software
quality [46, 30]. Organizations are under constant pressure to deliver products with ex-
cellent quality in tight schedules and reduced costs. If the software is delivered to the
client with incorrect behaviours, the reputation of the company can be at stake, and the
confidence of buyers in the products will decrease. Moreover, given the increased costs
of finding errors and vulnerabilities later in the development lifecycle, developers and or-
ganizations aim to detect and treat the issues as soon as possible when they are easier and
cheaper to address[66]. Thereby, it is necessary to create methods of software verification
that allow developers and organizations to have greater confidence in the quality of the
created software.

One of the most popular methods for establishing guarantees for the correct behaviour
of a program is the usage of type systems [29]. Type systems implemented in multiple
modern languages, such as Java or Haskell, allow developers to specify the expected type
of different operations, verifying at compile-time if these types are respected. Therefore,
unwanted errors can be eliminated before execution time. However, a program with all
the correct types can still have multiple errors; some examples include out-of-bounds
accesses or division by zero errors.

Refinement types have been proposed as a static verification mechanism that is em-
bedded within the programming language and prevents some classes of errors that cannot
be caught using a regular type system. The main idea of refinement types is to extend a
language with predicates over the basic types, restricting the allowed values in variables
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Chapter 1. Introduction 2

or methods.

1 @Refinement("y > 0 && y < 50")
2 int y;
3 y = 10; // okay
4 y = 100; // okay in plain Java, but it is a refinement type error

Listing 1.1: Simple refinement usage.

Listing 1.1 presents an elementary error detected when a variable is assigned a value
outside of its range.

Despite the perceived utility, refinement types have not yet been adopted by main-
stream developers. One of the possible explanations is that the earliest languages with
refinement type support (ML [24], Haskell [61]) are not widely popular in the industry.
Other possible reason is that there is a non-insignificant overhead in thinking about and
writing the refinement specification.

Java is one of the most popular programming languages in the world, achieving podium
places in multiple rankings throughout the years. Some examples of these rankings in-
clude the TIOBE Index [11] that counts the hits of 25 search engines for the language,
and PYLP [51] that determines the popularity of a programming language by the number
of tutorial searches on Google.

1.2 Goals

The main goal of this work is to promote the wide usage of refinement types by integrating
these types within Java. This goal can be achieved by creating an additional type system
with refinements on top of the existing Java type system, extending the language with
predicates over the basic types.

The expected contributions of this study include:

• a language designed with the input of developers (presented on Chapter 4);

• a formal definition for the additional type system (Chapter 5);

• an implementation of the type checking algorithm, named LiquidJava, and the inte-
gration of the prototype as an editor plugin (Chapter 6);

• an evaluation of LiquidJava using a reserach study performed by 30 developers
(Chapter 7).

Despite the importance of choosing the right language to promote the wide usage of
refinement types, other efforts must be made to ensure the success of this work. With this
concern, we defined the following requirements for LiquidJava:
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• Liquid type checking should work on top of an existing Java type checker.

• Refinements must be optional – A valid Java program with or without refinements
should type check.

• Refinements need to be expressive – The language of the refinements should be as
close to Java as possible, so developers do not have to learn a different language for
the specification.

• Liquid type checking should be decidable – without introducing unnecessary over-
head to the compilation process.

Each of the presented requirements will be detailed and analysed in section 3.1. The work
on this thesis focuses on the conception, implementation and evaluation of LiquidJava
as a software verification technique that can be used to increase the confidence of Java
software quality.

1.3 Document Structure

The remainder of this document is organized into eight chapters. Firstly, we introduce
the background and related work (Chapter 2), identifying studies and tools that focus on
similar approaches of software verification. Afterwards, the design process of LiquidJava
is described (Chapter 3), detailing the decisions that lead to the creation of the refine-
ments language and the LiquidJava type system. Both these topics are then detailed with
the presentation of the refinements syntax and language constructs(Chapter 4), and the
type system rules and verification examples (Chapter 5). An implementation of the pre-
sented concepts is thereupon revealed (Chapter 6) with the details of the prototype and
its integration into a development editor (IDE). Finally, an evaluation of LiquidJava is
performed (Chapter 7) with a research study directed to Java developers. To conclude,
the last chapters of the document present the future directions of current work (Chapter 8)
and the conclusions of this dissertation (Chapter 9).
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Chapter 2

Background and Related Work

This chapter presents methodologies and tools for software verification. It starts with tra-
ditional verification approaches in specific and critical domains (Section 2.1), and the ap-
plications of these methodologies into verification tools for Java programs (Section 2.2).
After the overview of verification methods, the focus changes to the multiple flavours and
implementations of refinement types in the scope of program verification (Section 2.3).
Finally, the chapter reviews work related to modelling object behaviour with type state,
presenting frameworks that apply these concepts into the Java language (Section 2.4).

2.1 Domain-specific Verification

Several methodologies for software verification have been introduced to specific domains.
Critical software, where the consequences of software errors can easily lead to catas-
trophic results, is a popular context for applying software verification. Some examples of
these programs run on medical devices, banking networks and space missions.

Model Checking [18] is one of the most popular software verification techniques used
in critical software. This automated technique is able to verify finite-state systems, includ-
ing sequential, concurrent and distributed systems. There are several implementations of
this technique, with Spin [27] being one of the most popular tools, but all suffer from the
state explosion problem [14], which limits the complexity of systems that can be tested.

Another popular technique is Design-by-Contract (DbC). This methodology was pro-
posed by B. Meyer within the Eiffel programming language [42] and relies on the ful-
filling of a contract between the clients of a class and the class itself. This contract is
specified in methods, as pre- and post-conditions, where the former must be respected by
the clients when invoking the class methods, and the implementation of the method must
guarantee the post-conditions. If either side does not respect the contracts, an error exists.
Dafny [37] is an example of a language and verifier that was created with the purpose of
designing verified software by means of DbC.

Dependent and refinement types are also used as verification techniques that introduce

5
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domain-specific information to a program via the type system. Fully dependently typed
languages allow the user to define custom types that depend on values. A typical example
is a type of list with a given length, expressed as Vec A n, where A is the type of elements
and n is the length of the list that can have an arbitrary value. Examples of fully depen-
dently typed languages include Agda [45], a functional programming language, Coq [12],
a proof-assistant, and Idris [10], a general-purpose language designed to encourage and
boost type-driven development. While in these languages developers can create types
with values attached, in languages with refinement types, basic types can be constrained
with a logic formula, creating a subtype of the already existing basic type. Languages
extended with refinements types are introduced latter in this chapter (Section 2.3).

Certified Compilation is also a small domain with an interest for verification. To ex-
ecute any program written in a high-level language, the source code must be translated
to a low-level language through a compiler. If the compiler itself has errors, the transla-
tion process can add incorrect behaviours to the executed code. To avoid this problem,
compilers can also be formally verified, leading to a certified compilation.

CompCert [38] is one of the first verified compilers that target a complete compilation
chain, starting with Clight [9] (subset of C programming language), going through eight
intermediate languages and finishing in PowerPC assembly code. The implementation
and proof of the compiler was done using the Coq[12] proof assistant. Other example is
the compiler for CakeML [58], a functional language based on a subset of StandardML.
This verified compiler was developed inside the HOL4[3] theorem prover and is used
within the pipeline of constructing verified applications in CakeML.

2.2 Java Verification

As a popular language, Java has been a target for the most popular methodologies of
program verification.

JavaPathFinder (JPF) [40] is a model checking tool created to analyse Java bytecode
that was developed by NASA Ames Research Center for mission critical programs. JPF
is designed to be used in distributed systems where it is able to check runtime errors,
assertion violations and deadlocks.

Within the methodology of Design-by-Contract, Java has several implementations.
According to a study by Aghaei, in 2018 [2], two of the best approaches in terms of
functionality are Bean Validation and OpenJML.

Bean Validation, renamed to Jakarta Bean Validation, is a Java API for JavaBean
validation in JavaEE and JavaSE [25], and consequently applied essentially in enterprise
applications. Bean Validation uses annotations to express constraints on methods, fields,
parameters, among others. The API makes available several annotations, such as @Email
for strings, @FutureOrPresent for dates or @NotNull for objects, and besides the built-in
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annotations, it is possible for the developer to create custom annotations more suited for
the working domain.

OpenJML [15] is an implementation of Java Modeling Language (JML) [36], a nota-
tion for writing specifications within the Java language. JML is a very expressive language
and can encode specifications of methods pre- and post- conditions, as well as class invari-
ants. The three major drawbacks of OpenJML are incompleteness, an undecidable logic
when the specification includes quantified assertions, and the fault messages/warnings
that can be false positives [15].

According to the collaborative Awesome Java ranking on formal verification [39], the
most popular tool for Java verification is the Checker Framework[47]. This tool uses a
pluggable types approach, where type checkers can be created and plugged into the code
as specific annotations in a Java program. The framework allows the creation of custom
type checkers and includes multiple ones by defaults, such as the Nullness Checker that
detects misusages of variables annotated with @NonNull.

2.3 Refinement Types for Verification

As introduced in Section 1.1, refinement types enrich a language type system with predi-
cates, leading to more expressive types than the ones in Java and similar languages [29].
Since refinements are integrated into the programming language, the barrier between im-
plementation and proof is thinner, which makes the program verification easier for de-
velopers. Moreover, the type checking of the refinements performs the automatical ver-
ification of the program, proving if all the refinements are respected or if any of them is
violated.

Freeman and Pfenning [24], in 1991, introduced the concept of refinement types inside
ML, a strongly-typed functional programming language, allowing the detection of more
errors in compile time. Liquid Types [53] (Logically Qualified Data Types), proposed in
2008, represent a subset of refinement types that only use predicates over a decidable logic
to ensure the inference and type checking decidability. LiquidHaskell [60] presents an
implementation of liquid types in Haskell where each type is decorated with a predicate
from a decidable refinement logic. In this work, Vazou et al. introduce type aliases to
improve the brevity and readability of the predicates, the usage of refinements in function
contracts capturing pre- and post-conditions, and the introduction of measure functions to
specify properties of data types.

Since the initial proposal of refinement types, there has been an effort to bring their
usefulness to more mainstream, imperative programming languages. CSolve [52] uses
refinement type checking to verify heap layout and pointer usage within C programs using
macros to express the liquid refinements. Kazerounian [32] introduced refinements for
Ruby, an object-oriented and dynamic scripting language. The proposed system, RTR,
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adds the refinements on top of a ruby type system and verifies the properties through
a translation to non-object-oriented Rosette, a solver-aided host language that interacts
with Z3 for logical verification. DJS [13] is a typed extension of Javascript that targets
features of dynamic languages, as extensible objects and prototype inheritance, as well as
imperative features such as flow-sensitive strong updates on mutable variables.

In 2016, Schmid et. al [55] and Vekris et .al [62] proposed the addition of refinements
in Scala and Typescript, respectively, with constructs to model and verify object-oriented
aspects of the language. In both studies, refinements are introduced as class invariants
on immutable class fields (that cannot be modified outside the class constructor), which
allows the usage of the immutable fields on the refinements of the mutable ones.

In the Java language, Stein et al. [56] applied a specific set of refinement types to
stream-based processing but used a fixed type hierarchy, limiting the expressiveness of
the refinements since they do not use logical predicates to qualify the types.

2.4 Type State

In object-oriented software systems, objects usually store data that can be accessed and
modified by methods. Often, interfaces and classes define or implement methods that are
implicitly expected to be used in a specific sequence, defining a protocol for the class.
However, mainstream object-oriented languages offer only informal documentation to
capture these protocols, not verifying if the protocol is followed, leading to unexpected
runtime errors. This problem has been previously explored with different optics, and this
section presents alternatives to make protocols explicit and statically verifiable.

Strom et al. [57] introduced the concept of typestate in object-oriented languages as
a refinement of the concept of type that determines the subset of operations allowed in a
specific object context. With typestates, it is possible to define the legal and illegal opera-
tions of each state, leading to the identification of valid and invalid execution sequences.
An object typestate can be described using a Finite State Machine graph with states and
state transitions.

Following the concept of typestate, the paradigm of typestate-oriented programming [4]
was presented as an extension of object-oriented programming. In this paradigm, intro-
duced with the Plaid programming language, objects are modelled according to their in-
ternal states, and methods may imply a transition to a new object state. Therefore, each
method specifies if its execution produces a change in the object state, making it explicit
in the specification. The definition of states and their transitions allows for the accurate
description of protocols and can prevent errors in the invocation pipeline.

In Java, the typestate concept was introduced by Bierhoff and Aldrich [7], following
the work on Fugue [17], and relates typestate with subtyping and inheritance. In this ap-
proach, methods are annotated with pre- and post-conditions for the object state and all the
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methods parameters. Each method describes the possible source and destination states,
allowing the definition of multiple cases if different sources result in different states. Sub-
classes can model their states using the states defined in the superclass and split them
into new ones, allowing for a more precise specification. One of the drawbacks of this
approach is the impossibility of using dependent types in the specification (e.g. the spec-
ification of the return value refer to a parameter). Another one is that the type checking
occurs dynamically, forcing the program’s execution to verify the state properties.

Mungo [34] is also a tool that allows for the definition of object protocols in Java,
using the notion of type state and statically verifying if the defined protocol is followed.
In Mungo, the user creates a new .protocol file with the specification of the possible states
and the allowed transitions, and associates the specification to a class with the @Typestate
↪→ annotation with the protocol’s name file. In this approach, the transitions may depend
on the return value of the methods if they represent Java enumerates. In June 2021, Java
Typestate Checker [44] was introduced as a new extended implementation of Mungo and a
plugin for the Checker Framework. It extends Mungo with modelling function arguments
and return values, verification of protocol completion, control over shared resources, and
detection of null-pointer exceptions. However, both approaches define the protocol in
external files instead of integrating the information in the Java class. Using the external
file implies the replication of methods’ signatures in both the class and the specification,
making the changes harder to apply. It also implies the increasing number of files in the
project, which may lead to difficult navigation in large projects, making it hard to match
the class with the specification file.

The latest long-term support Java version, Java 17 (released in September 2021), fi-
nalised the introduction of sealed classes 1 that can be used to implement state machines.
Sealed classes restrict the classes that can extend or implement a class. This feature can
improve the implementation of state machines in Java since it is possible to limit the states
available for a class and, for each state, create a specific class that implements the allowed
transitions (as exemplified in a technical blog post2). However, this approach involves the
creation of a new class for each state and the methods to be split into multiple classes,
which can make the superclass information disperse. Moreover, the state transitions are
defined by the interfaces the class implements, so each class method cannot have a specific
transition or depend on the values of the method’s parameters.

1https://openjdk.java.net/jeps/409
2https://benjiweber.co.uk/blog/2020/10/03/sealed-java-state-machines/
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Chapter 3

Language Design Process

This chapter focuses on the design process for the integration of refinement types within
the Java programming language. The design requirements are addressed in Section 3.1
and the design decisions that were incorporated in the solution are presented in Sec-
tion 3.2.

3.1 Requirements

This section details the four requirements designed to promote the wide usage of Liquid-
Java, introduced previously in Section 1.2.

R.1 Liquid type checking should work on top of an existing Java type checker
The purpose of the liquid type checker is to verify the restrictions introduced by
refinement types to a Java program. Hence, the traditional type checking of Java
programs should still be performed before the additional refinement verification.
Thus, a Java program regardless of having refinements or not, should always be
compiled by a regular Java compiler.

Regarding the liquid type checker, this requirement allows a better maintenance of
the code, since it only checks the use of refinements and not any other Java features,
thus there is no unnecessary repeated code between the Java type checker and the
liquid type checker.

Another advantage is that the liquid type checking should keep working with new
versions of Java. Implementing the liquid type checking on top of a Java type
checker prevents an early deprecation of LiquidJava with new Java releases.

R.2 Refinements must be optional A Java program without refinements must be suc-
cessfully validated by the liquid type checker, allowing specifications to be added
after the implementation, including to pre-existing codebases. This grants the de-
veloper the possibility of incrementally build the specification of the program, start-

11
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ing with small verifications (i.e. inside a function) and leading to a complete speci-
fication of the program.

R.3 Refinements need to be expressive Refinements must be written with a syntax that
is as similar to Java as possible to enable developers to annotate the specifications
without learning a completely new language.

R.4 Liquid type checking should be decidable To provide good usability, the type-
checker must be fast and consistent in order to be used during the iterative devel-
opment process. To this end, refinements are limited to Liquid Types [53], since
they are decidable and typically quickly verifiable, using SMT Solvers. Thus, the
predicates are restricted to a decidable logics using quantifier-free linear integer
arithmetic with uninterpreted functions, and accepting only SMT-decidable opera-
tions.

3.2 Design Solution

The solution developed can be split into two main topics: the design of the refinements
language and how it is incorporated into Java programs; and the design of the verifica-
tion system to validate these programs. These topics are detailed in Section 3.2.1 and
Section 3.2.2 and, together, they answer the requirements presented in the previous sec-
tion; specifically, the first focuses on answering the requirements R.2 to R.4 and the latter
answers R.1.

3.2.1 Refinements Design

In previous refined typed languages [29, 13], variable and method declarations have been
the main target of annotations. However, in Java, classes are a core concept, and a desir-
able target for refinements. Furthermore, the language in which refinements are written
needs to be flexible and understandable. Taking this into account, we made two major
decisions regarding the refinements design:

• Refinements are encoded as Java Annotations in the source code, since annotations
are optional, support all necessary targets and are commonly used in Java since their
introduction in JDK 1.5 (Section 3.2.1.1);

• Refinements are expressed within strings, which are arguments to annotation, using
a refinements language, RJ , that follows a syntax based on the feedback of Java
developers (Section 3.2.1.2).

These decisions culminate in the example present in Listing 3.1 and are detailed in the
remainder of this section.
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1 @Refinement("y > 0 && y < 50")

2 int y;

Listing 3.1: An example of a variable annotated with a refinement in LiquidJava.

3.2.1.1 Refinements as Annotations

Refinements are encoded as annotations on target Java features, so that adding the refine-
ments (regardless of them being correct or not) does not prevent the program from being
compiled with a regular Java compiler. This solution fulfills R.2 since these annotations
are always optional as they are not verified by the Java type checker.

Additionally, annotations have a target code element to which they can be applied1,
and these targets include local variables, parameters, methods, fields and classes which
allows us to add refinements in all the desired code elements.

Using annotations to express restrictions on variables has become more popular over
the years, with @NonNull and @NonEmpty being present in many Android and enterprise
applications. Further, two of the verification tools presented in Section 2.2 use annota-
tions to encode specifications in the source code. In both cases, the tool makes available
multiple annotations for the developer to incorporate in the source code. However, the
creation of custom annotations requires some expertise on the usage of the tool.

The popularity of annotations gives us some confidence that their usage within Liquid-
Java will not constitute a barrier to the adoption of the system. Thus, a new @Refinement

annotation was created to express refinements.
Other annotations will be presented in Chapter 4 as syntax sugar for some features in

the refinements language.

3.2.1.2 Refinements Language

Refinements are written within strings inside the annotations and use a personalized lan-
guage that aims to be easy to understand by java developers. This language, named as
RJ , is detailed in Chapter 4, and aims to be as similar to Java as possible, addressing
R.3, and allowing a fast adaptation of Java developers to the writing of specifications. To
improve the usability chances of refinements, we conducted an online survey to assess the
best syntax for RJ while keeping the language verifiable by SMT Solvers, fulfilling R.4.

3.2.2 System Design

To verify a Java program annotated with refinements, a LiquidJava verifier proves that all
refinements are respected throughout the program or shows that there is a violation of the
specification. The verifier design is summarized in Figure 3.1.

1https://docs.oracle.com/javase/tutorial/java/annotations/basics.html

https://docs.oracle.com/javase/tutorial/java/annotations/basics.html
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Figure 3.1: Design of LiquidJava Verifier.

The verifier system receives as input a Java program annotated with refinements and
performs a static verification before the execution of the program.

The first step of the system involves parsing the input to an abstract syntax tree (AST)
used for the verification. Since the parsing always happens before the liquid type check-
ing, we can fulfil R.1 by choosing a parser that incorporates Java type checking. We used
the Spoon[49] framework, which uses the Eclipse Compiler Kit, adopting Java features
as they are released.

Taking an AST representation of the program as input, the liquid type checking tra-
verse the AST and all the expressions are checked against their expected type through
subtyping relationships. These relationships are then discharged to an SMT Solver, which
proves their satisfiability. The verification process will be explained in detail in Chapter 5.



Chapter 4

RJ – The Language of Refinements

To express the refinements in LiquidJava, we designed a new language, named RJ (Re-
finements in Java), that is used inside the refinement annotations. This chapter introduces
this language, its features and the syntax used to describe each feature. To this end, we
present the code elements to which we can add refinements (Section 4.1), the grammar for
RJ language (Section 4.2), a survey on the syntax preferences of Java developers for Liq-
uidJava features(Section 4.3), and, finally, the language features added to model classes
(Section 4.4).

4.1 Refinable Targets

Refinements constrain the allowed values in certain code elements, modelling their be-
haviour. In LiquidJava, we can introduce refinements in the following code elements:

• Variable declarations - These refinements ensure that any variable assignment
must respect the refined type of the variable.

• Method definitions - Refinements can be applied both to the parameters and the
return value of any method. Everywhere a method is called, the arguments will
have to fulfill the refinement of the parameters, and the return value will have the
expected refinement of the method declaration.

• Class fields definitions - Fields can have refinements that work as invariants through-
out the all class, including inside each class method.

• Class definitions - Refinements can be used in classes to model the state of ob-
jects. Classes are considered the fundamental programming elements of the Java
language [33]. Although classes themselves do not have a specific value that can be
refined, they can have methods that produce changes to the internal state of the ob-
jects. In this view, we can refine the object state when a method is called and when
the method has ended using the annotation @StateRefinement(from="predicate"

↪→ , to = "predicate").

15
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Previous works on refinement types focused on refinements in variables and meth-
ods. When refinements were introduced into object-oriented languages, class fields could
also be modelled with refinements. However, the modelling of object type state as state
refinements is novel in LiquidJava.

4.2 RJ Grammar

Since refinement types aim to extend the type system by adding predicates, the core syn-
tax of the RJ relies on logical predicates. The predicates allowed in the language belong to
the SMT-decidable logic and are drawn from the quantifier-free linear arithmetic and un-
interpreted functions logic. Predicates can use boolean and integer literals and variables,
linear arithmetics (e.g. addition, subtraction), boolean operators (e.g. greater than), logi-
cal operators (e.g. and, or), the ternary expression if-then-else, and invocation of unin-
terpreted functions. The refinements language also includes anonymous variables and the
declaration of predicate alias and ghost functions, three language constructs that will be
detailed in Section 4.3. The refinements language is mainly used inside the @Refinement

↪→ annotation. However, we introduced new annotations as syntax sugar to facilitate
the usage of additional language constructs, such as the declaration of predicate alias and
ghost functions, and to model the class state. These annotations also use the refinements
language to encode the declarations and the refinement predicates.

Figure 4.1 depicts the formal grammar of the refinements language. The decisions for
the refinements syntax are detailed in Section 4.3 and Section 4.4. In the first section,
we describe the implementation based on results of an online survey for Java developers
regarding their preference on possible options for the refinements syntax on traditional
refinements constructs. In the latter section, we focus on the syntax for the features that
model classes.
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start S ::= Pred | AliasDecl | GhostDecl;
predicate Pred ::= Exp

| Pred LOP Pred
| ! Pred
| Pred ? Pred : Pred;

expression Exp ::= Exp BOP Exp
| Oper;

operand Oper ::= LitExp
| Oper AOP Oper
| UOP Oper;

literal expression LitExp ::= c
| x
| _
| x ( Arg );

argument Arg ::= Pred
| Pred, Arg;

ghost decl. GhostDecl ::= ghost GhostDecl′

| GhostDecl′

GhostDecl′ ::= T x( ArgDecl )
| T x;

alias decl. AliasDecl ::= type AliasDecl′

| AliasDecl′;
AliasDecl′ ::= x ( ArgDecl ) { Pred };

argument decl. ArgDecl ::= T x;
logical operator LOP ::= && | || ;
boolean operator BOP ::= > | >= | < | <= | == | ! = ;
unary operator UOP ::= ! | + | − ;

arithmetic operator AOP ::= + | − ;

Types T ::= int | boolean;

Figure 4.1: Grammar for the Refinements Language.
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4.3 Survey on Refinements Syntax

To assess the best syntax for the language of refinements, we created and shared an online
survey with possible syntaxes for LiquidJava features based on features of other imple-
mentations of refinement types. These features include type refinements of variables and
methods and the use of predicate aliases and anonymous variables. For each of the lan-
guage features, we proposed two or three different syntaxes that the participants evaluated
with three preference levels: Not Acceptable, Acceptable, and Preferable.

The survey started by asking the background of participants and briefly explaining
the concept of refinement types, with the annotation of a variable, before questioning the
preferred syntax options for the LiquidJava features.

We sent the survey by email to current and former students and researchers of two
universities (Faculdade de Ciências da Universidade de Lisboa and Carnegie Mellon Uni-
versity) as well as Java developers in enterprises, and also shared the survey link during
the POPL20211 conference. As a result, we obtained a total of 50 valid answers from
participants familiar with Java.

This section presents the background of participants (Section 7.2) and the study ques-
tions with the corresponding answers (Sections 4.3.2 and 4.3.6).

4.3.1 Background of Participants

At the beginning of the survey, all participants answered background-related questions
pertaining to their familiarity with Java, functional programming languages, refinement
types and JML. For each of the technologies, the participants evaluated their knowledge
with one of the four possibilities: Not Familiar, Vaguely Familiar, Familiar and Very
Familiar. The answers to these questions are presented in Figure 4.2.

Since the survey aims to assess the best syntax for the usage of refinements in Java,
we were interested only in participants with some familiarity with the language; other-
wise, the answers would have not been demonstrative of the population that uses Java and
might use LiquidJava. To this end, we only accepted answers from participants at least
Vaguely Familiar with Java. From the selected answers (shown in Figure 4.2a), 52% of
the participants considered themselves Very Familiar with Java, 34% Familiar and the
remaining 14% Vaguely Familiar.

We inquired the familiarity with functional programming languages to explore if it
has a connection to their preferred syntaxes since some syntax proposals were inspired in
previous implementations of refinement types developed in functional languages. Their
background in this topic is spread through the four familiarity levels as shown in Fig-
ure 4.2b, with 62% of the participants choosing the middle options of Familiar and
Vaguely Familiar.

1https://popl21.sigplan.org/
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Figure 4.2: Background information on the participants of the syntax survey.

We also gathered their familiarity with refinement types (Figure 4.2c) and with JML
(Figure 4.2d). Familiarity with JML was relevant since it is a popular specification lan-
guage to model the Java language. The distribution over the four familiarity levels was
similar for both verification techniques, since the higher percentage of participants con-
sidered themselves Not Familiar with the topics (56% regarding refinement types, and
46% regarding JML) and a very small amount considered themselves Very Familiar (only
one participant on refinement types and three on JML). 42 out of the 50 participants are
only Vaguely Familiar or Not Familiar at all with the topic of refinement types, and, 41
participants chose the same options for JML, as shown in Figure 4.2c and Figure 4.2d.

After filtering the answers to only contain participants familiar with Java, we analyzed
other connections between the background information of participants. From now on, we
refer to the participants as familiar with a topic if they answered that they were Familiar
or Very Familiar with it.

Figure 4.3a represents, in a Venn diagram, the participants familiar with functional
languages and refinement types. Since the most popular implementations of refinement
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Figure 4.3: Connection between the participants background information on refinement
types and functional languages and JML.

types were developed in functional languages, we expected that the participants familiar
with refinement types were also familiar with functional languages. This expectation was
confirmed considering that only 1 participant familiar with refinement types is Vaguely
Familiar with functional languages, and the remaining are all Familiar or Very Familiar
with the topic.

We also compared the familiarity of participants with JML and refinement types since
both techniques are used for software verification. However, only 2 participants are fa-
miliar with both topics, as presented in Figure 4.3b. Additionally, all the participants that
are Very Familiar with JML are also Very Familiar with Java, and all of them are familiar
with the Java language.

The following sections present the syntax options for LiquidJava features and the
answers given by the participants.

4.3.2 Anonymous Variable

The anonymous variable can be used as a placeholder for the refined variable inside the re-
finement. This feature can minimise the effort developers, since the placeholder is shorter
than most variable names and makes the same refinement reusable without changing the
variable name. For this feature, we presented three possible syntaxes shown in Figure 4.4,
all of them with syntaxes that cannot be used to name a variable in Java in order to prevent
name clashing. The first syntax was inspired in previous implementations of refinement
types where the v was commonly used to name the value being refined. For example {v

↪→ : int | v > 0} could be a refinement used to state that the value of a variable must
be positive, independently of the variable name. The second syntax option used the ?

symbol as the anonymous variable, giving another meaning to an existing symbol in Java
(the question mark is already used to represent wildcards2). Finally, the last proposed

2https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
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1 @Refinement("\\v > 0")
2 int biggerThanZero = 10;

(a)

@Refinement("? > 0")
int biggerThanZero = 10;

(b)

@Refinement("_ > 0")
int biggerThanZero = 10;

(c)

Figure 4.4: Syntax options to represent anonymous variables.

syntax used the _ (underscore) symbol, commonly used in documents as a placeholder to
the add personalized information; in this case, it works as a placeholder for the refined
variable. The underscore symbol has also been used in other programming languages,
such as Scala3 to ignore the name of the variable and use the symbol as a placeholder in
functions, similarly to using lambda expressions.

We asked participants to evaluate the three syntaxes in terms of preference and got the
answers presented in Figure 4.5a. From these answers, we discarded the first syntax since
60% of the participants evaluated it as Not Acceptable, the highest rate when compared
to the other two options. To chose the preferable syntax between the second and third
options, we took a more detailed approach since the third option has more Preferable
answers, but also more Not Acceptable answers, whereas the second option has a higher
rate of Acceptable answers. To differentiate the two options, we decided to analyse the
effects of removing the answers that selected the first option as Preferable and got the plot
in Figure 4.5b. With this exercise, it is possible to see that the number of Not Acceptable
answers is the same in both remaining options; and the third option remains the one with
the highest Preferable rate with 50% of the participants choosing this as the Preferable
option. Therefore, we concluded that the third option, with the underscore, was the best
choice for the anonymous variable.

4.3.3 Variables

The type of variables can be refined to ensure that all the assignments given to the variable
respect the written boundaries. For the syntax of the refinements in variables, we proposed
two options, presented in Figure 4.6. The first option contains only the predicate, and the
variable is referred to by its name (Figure 4.6a).

The second option is closer to a lambda expression, where the refined variable is intro-
duced at the beginning just before the refinement predicate (Figure 4.6b). The latter option
is inspired by the syntax used in previous implementations of refinement types [29]. The
refinements presented in these examples represent a grading system from 0 to 20, and the
following conditions are expressed:

• negativeGrade is an integer smaller than 10;

• excellentGrade is an integer equal to 19 or to 20;
3https://www.baeldung.com/scala/underscore
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Figure 4.5: Participants answers on their syntax preference for the anonymous variable.

• goodGrade is an integer with a value between negativeGrade and excellentGrade.

The preferences of participants are shown in Figure 4.7 where it is evident that the
first option was preferred, with 66% of Preferable answers and only 6% of Not Accept-
able answers, leading to our choice of the first option as the syntax of the refinements in
variables.

Additionally, since the second syntax was closer to previous implementations of re-
finement types, we checked if the participants familiar with them had a particular prefer-
ence for this syntax. As expected, 71% of the participants familiar with refinement types
chose the second syntax as Preferable and two of them found the first syntax Not Ac-
ceptable, which might show that the participants prefer to keep the syntaxes they already
use. However, since the participants familiar with refinement types are only 18% of the
sample, we kept the first option as the syntax for the refinements in variables.

4.3.4 Method declarations

In method declarations, we can refine the parameters and the return value. For the refine-
ments syntax, we proposed two options shown in Figure 4.8. The first option attaches
each of the refinements to the type of variable that it is refining. Therefore, the parame-



Chapter 4. RJ – The Language of Refinements 23

1 @Refinement("negativeGrade < 10")
2 int negativeGrade = 8;
3 @Refinement("excellentGrade == 19 || excellentGrade == 20")
4 int excellentGrade = 19;
5 @Refinement("goodGrade > negativeGrade && goodGrade < excellentGrade")
6 int goodGrade = 17;

(a)

@Refinement("{ x | x < 10}")
int negativeGrade = 8;
@Refinement("{ y | y == 19 || y == 20}")
int excellentGrade = 19;
@Refinement("{ x | x > negativeGrade && x < excellentGrade}")
int goodGrade = 17;

(b)

Figure 4.6: Syntax options for the refinements in variables.
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Figure 4.7: Answers on the syntax for refinements in variables.
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1 @Refinement("_ >= 0 && _ <= 100")
2 static int percentageFromGrade(@Refinement("grade >= 0") int grade,
3 @Refinement("scale >= 0") int scale) {...}

(a)

@Refinement("{grade >= 0} −> {scale > 0} −> {_ >= 0 && _ <= 100}")
static int percentageFromGrade( int grade, int scale){...}

(b)

Figure 4.8: Syntax options for the refinement of Methods.

ters have the refinements just before their basic type, and the return refinement is above
the method, before the return type. The latter option has a syntax inspired by the type
signatures used in functional languages, such as Haskell.Therefore, the parameters and
return refinements are written in the same line, split by the -> symbol, with a specific
order starting with the parameters and finishing with the return type of the method.

The example chosen to represent both syntaxes includes a refinement for each of the
parameters and the return value. These refinements express the following conditions:

• grade, the first parameter, is an int greater than or equal to 0;

• scale, the second parameter, is a positive int;

• the return value must be an int between 0 and 100.

Figure 4.9 shows the participants preferences on both options for the refinements in
methods. In both plots, the Preferable option had more answers than the two other ratings;
however, the first option has 10% more Preferable answers and 16% less Not Acceptable
answers. Therefore, the first option was the syntax chosen for the refinements in methods.

Since the second syntax had a similar flavour to syntaxes used in functional languages,
we further analysed the answers of participants familiar with functional languages. How-
ever, we did not find a relation between their background and their preference for the sec-
ond syntax, since only 36% of the participants familiar with functional languages chose
this option as Preferable, as opposed to the 56% that chose the first syntax. Furthermore,
24% of these participants pointed the second option as Not Acceptable, comparing to the
12% that pointed the same option for the first syntax. Therefore we cannot see a leaning
of the participants familiar with functional languages to the syntax option more similar to
the syntax used in functional languages.

4.3.5 Predicate Aliases

To simplify the reuse of predicates inside refinements, it is possible to create aliases for
them and enable their invocation inside refinements. Like macros (used in other program-
ming languages such as C or C++), aliases are created at the beginning of a file and can
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Figure 4.9: Answers on the syntax for the refinements in Methods.

take parameters to encode the predicate. Aliases can then be invoked with variables in-
side refinements, improving the readability of the expressions and making the predicates
easily reusable.

For the survey, we proposed three possible syntaxes for the addition of aliases in
LiquidJava. The syntaxes, presented in Figure 4.10, used the alias PtGrade, that describes
an int between 0 and 20, representing the grade range used in the Portuguese higher
education system. The two first syntaxes declare the alias above the class declaration and
show an invocation of the alias inside the refinement. The first syntax has a similar style
to the refinements presented in the Æon language [22], while the second syntax is similar
to the creation of a method in Java. The last syntax intends to shorten the invocation of the
alias by creating a new annotation for each new alias. This latter option involves creating
a file for the new annotation and its refinement, but simplifies the alias invocation.

The preferences of participants on the proposed options are in Figure 4.11, from where
the third option (with the separate files) was discarded, since 56% of the participants con-
sidered it Not Acceptable. Between the first two options, the second had a clear prefer-
ence since 44% considered it Preferable when compared with the other two, and only
2% classified it as Not Acceptable. Therefore, the chosen syntax for predicate aliases in
LiquidJava was the second option presented.

In the chosen syntax, the keyword type helps to identify the alias declaration inside
the @Refinement annotation and differentiate the beginning of the alias declaration from
the beginning of a predicate. However, this distinction could become more evident if the
declarations of new constructs were introduced in other annotations, as suggested by one
participant in the comments of the study. To this end, new annotations were introduced
as syntax sugar allowing the developers to use more specific annotations instead of the
@Refinement. Therefore, we created the @RefinementAlias annotation for the alias dec-
laration, as exemplified in Listing 4.1, that can be placed above the class declaration and
makes the usage of the type keyword optional.

1 @RefinementAlias("PtGrade(int v) { 0 <= v && v <= 20 }")
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1 @Refinement("PtGrade refines Integer where (_ >= 0 && _ <= 20")
2 class MyClass{
3 ...
4 @Refinement("positiveGrade == PtGrade && positiveGrade >= 10 )")
5 int positiveGrade = 12;
6 }

(a)

@Refinement("type PtGrade(int x) { x >= 0 && x <= 20}")
class MyClass{

...
@Refinement("PtGrade(positiveGrade) && positiveGrade >= 10")
int positiveGrade = 12;

}

(b)

//File PtGrade.java
@Refinement("{int x | x >= 0 && x <= 20}")
@Retention(RetentionPolicy.CLASS)
@Target({ElementType.METHOD, ElementType.FIELD,

ElementType.LOCAL_VARIABLE,
ElementType.PARAMETER, ElementType.TYPE})

public @interface PtGrade{}

//File MyClass.java
class MyClass{

...
@PtGrade @Refinement("positiveGrade >= 10")
int positiveGrade = 12;

}

(c)

Figure 4.10: Syntax options for the declaration and usage of Aliases.
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Figure 4.11: Preference answers on the alias syntax.
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Listing 4.1: Examples of Refinements in Variables.

4.3.6 Ghost/Uninterpreted Functions

In order to introduce more operations inside refinements, we included the declaration and
usage of uninterpreted functions inside the refinements language. Uninterpreted functions
belong to the SMT-decidable logic [6] and do not have an implementation; therefore,
the only information the SMT solver has about their behaviour is encoded by the axiom
∀x, y.x = y => f(x) = f(y). However, despite the limited information of uninterpreted
functions, they are useful to encode properties in refinements.

In LiquidJava, uninterpreted functions can be described as ghost functions to distin-
guish them from regular functions called inside Java code, since ghosts can only be used
inside the specification. Traditionally, the term ghost code is used for code intended only
for the program specification [21], not interfering with its execution. Since ghost func-
tions only have the signature before they are used inside predicates, we proposed three
possible placements for the declaration of these functions inside the @Refinement anno-
tation, all with a syntax similar to the creation of a function in Java with the addition of
the keyword ghost at the beginning.

Considering that all annotations must have a target code element, we proposed the
placement of the ghost declaration above three different code elements: classes, methods
and class attributes. The example used to illustrate the three possibilities introduces the
len ghost function that receives a List as parameter and returns an int value. The ghost
function is then used inside the refinement of the createList() and append() methods.

Participants evaluated their preference in the three placement options, and the results,
presented in Figure 4.12, showed that they preferred the ghost function declaration above
any method, with 44% of the participants declaring it as Preferable and only one partici-
pant selecting it as Not Acceptable.

For the declaration of the ghost functions, we introduced the @Predicate annotation
as syntax sugar, similarly to what happened with the alias (Section 4.3.5).
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1 //Declaration above the class
2 @Refinement("ghost int len(List xs")
3 class MyList{
4 static final int MAX_VALUE = 50;
5

6 @Refinement("len(_) == 0")
7 public List createList() {...}
8

9 @Refinement("len(_) == len(xs) + 1")
10 public List append(List xs, int k) {...}
11 }

(a)

1 //Declaration above any method of the class
2 class MyList{
3 static final int MAX_VALUE = 50;
4

5 @Refinement("ghost int len(List xs")
6 @Refinement("len(_) == 0")
7 public List createList() {...}
8

9 @Refinement("len(_) == len(xs) + 1")
10 public List append(List xs, int k) {...}
11 }

(b)

1 //Declaration above any class attribute
2 class MyList{
3 @Refinement("ghost int len(List xs")
4 static final int MAX_VALUE = 50;
5

6 @Refinement("len(_) == 0")
7 public List createList() {...}
8

9 @Refinement("len(_) == len(xs) + 1")
10 public List append(List xs, int k) {...}
11 }

(c)

Figure 4.12: Syntax options for the placement of the declaration of ghost functions.
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Figure 4.13: Preference answers to the placement of ghost functions.

4.4 Class Refinements

Most of the previous implementations of refinement types do not offer features to model
classes since they were not developed in object-oriented programing languages, and the
works that introduce refinements to languages with this paradigm only have limited con-
structs to model classes via their fields. Therefore, we introduce class refinements to
model the objects internal state in each class method.

We created the annotation @StateRefinement(from="predicate", to="predicate

↪→ ") to model the source state and the destination states of the class methods. The from
and to predicates follow the refinements language and model the object state. Thus, the
from predicate defines the state of the accepted objects, while the to predicate defines the
new state of the object at the end of the invocation. If a method has different destination
states depending on the source state, we can add multiple @StateRefinement annotation
to the method, each with one of the possible conjunctions of source and destination states.

To model the class state, one can create ghost functions that represent class properties
(such as the size of a list) or define a set of states that the class objects can have. The
states and the ghost properties are invoked inside the predicates as functions that take the
current object as argument, using the this keyword. Moreover, if it is necessary to refer
to the previous state of the object, it is possible to use the old keyword with the current
object, resulting in the expression old(this).

This section presents the syntax used for the creation of the ghost properties (Sec-
tion 4.4.1) and the state set (Section 4.4.2), exemplifying their usage.

4.4.1 Ghost

Ghost functions can be used within the context of the class to model the state properties
throughout the methods. To simplify the creation of the ghost functions in this context,
we introduced the @Ghost annotation that allows a shorter syntax for the declaration of the
ghost function, removing the mandatory ghost keyword, and assuming that the created
function only receives one parameter with the class type.
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1 @Ghost("int size")
2 public class MyArrayList<E>{
3 @StateRefinement(to="size(this) == 0")
4 public MyArrayList(){...}
5

6 @StateRefinement(to="size(this) == (size(old(this)) + 1)")
7 public boolean add(E elem){...}
8

9 @StateRefinement(from = "index >= 0 && index <= size(this)",
10 to = "size(this) == (size(old(this)) + 1)")
11 public boolean add(int index, E elem){...}
12

13 @StateRefinement(from = "size(this) > 0 && index >= 0 && index < size(this)",
14 to = "size(this) == size(old(this))")
15 public void get(int index){...}
16

17 @StateRefinement(to = "size(this) == 0")
18 public void clear(){...}
19 }

Listing 4.2: Annotation of a list with the state transitions related to the size property.

An example of the ghost declaration is in the first line of Listing 4.2, where we model
a list with the size property and define its value in the state transitions. In this example,
we can also see the initialization of the size property in the constructor (that can only
have a to state) and its modification in the methods add and clear. Moreover, the method
add (with two parameters), and the method get use the current state of the size property
to check if the index parameter is guaranteed to be within the allowed range.

4.4.2 StateSet

Java classes usually define protocols that client programs must follow. However, these
protocols are primarily defined through informal documentation using natural language
(inside Javadoc). Therefore, protocols are not enforced during the code development lead-
ing to runtime exceptions. In LiquidJava, we propose adding class states to model a class
protocol defined by finite state machines. To this end, we enumerate the possible class
states using the @StateSet annotation and implement the protocol in the state refinements
of the methods by invoking the states with the current (this) object.

Listing 4.3 presents an example of a FileReader class, similar to the InputStream-
Reader4 class from java.io library. In this example, we define the two possible class
states as open and close, and we specify the protocol described in Figure 4.14 in the class
methods. The constructor is always the first method to be invoked, representing the en-
trance arrow in the state machine and getting the object in a open state. The method read

4https://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.html
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1 @StateSet({"open", "closed"})
2 public class FileReader{
3 @StateRefinement(to="open(this)")
4 public FileReader(String filename){}
5

6 @StateRefinement(from="open(this)")
7 public void read(){}
8

9 @StateRefinement(from="open(this)",
10 to="closed(this)")
11 public void close(){}
12 }

Listing 4.3: Annotation of the FileReader class
with the state transitions allowed.

open closed
close()

read()

Figure 4.14: Finite State Machine
that represents the protocol of the
FileReader class.

can only be called if the object is in the open state and does not change the object state,
which means that we can omit the to predicate, and the object will remain in the open
state. The last method in the class, close(), requires the object to be in the open state and
transforms the internal state of the object to a close state.

The states declared in the same @StateSet are disjoint, so the object can only be in
one of the states from each set at any moment. In the previous example, an object cannot
be open and close at the same time. However, we can define multiple state sets to encode
overlapping states between sets. Listing 4.4 augments the previous specification of the
FileReader with a new state set representing the reading process, with three possible
states: nothingRead, startedReading and finishedReading.

1 @StateSet({"open", "closed"})
2 @StateSet({"nothingRead", "startedReading", "finishedReading"})
3 public class FileReader{
4 @StateRefinement(to="open(this) && nothingRead(this)")
5 public FileReader(String filename){}
6

7 @StateRefinement(from="open(this)", to="startedReading(this)")
8 public void read(){}
9

10 @StateRefinement(from="finishedReading(this)")
11 @StateRefinement(from="startedReading(this)")
12 public void getText(){}
13

14 @StateRefinement(from="open(this)", to="closed(this) && finishedReading(this)")
15 public void close(){}
16 }

Listing 4.4: Annotation of the FileReader class with the state transitions allowed.
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In this example, the object created stays with the state open and nothingRead, from
which the client can call the read or close method, since both only require the object to
be open. If the client invokes the read method, the object state will stay in the open and
startedReading state, but if the client invokes the close method, the object will be with the
states closed and finishedReading. From any of these states, the client can call the getText
method, since it accepts the object in either the startedReading and finishedReading.

Now that we have two different state sets, the objects must always be in one state of
each set. Nevertheless, if a method does not change the state from one of the sets, it can
be omitted from the refinement to simplify the writing of the refinements. The method
read represents this behaviour since the from predicate only refers to the open state (from
the first state set), accepting any state from the second set, and in the to predicate we only
refer the state change for the second set (to startedReading) while omitting that from the
first set, the object remains with the open state.

The previous example shows the usage of two state sets, each with its own disjoint
states, but we can include any desired number of state sets to model a class. We can also
combine state sets and ghost properties in the same class to model the expected behaviour.



Chapter 5

LiquidJava Type System

This chapter describes the type system of LiquidJava and its verification process. Thus,
we start by presenting an overall approach of the verification (Section 5.1), followed by
the introduction of verification conditions (Section 5.2) and the formal notation used to
write the type system rules (Section 5.3). Finally, we describe how the verification is
performed for variables, methods and classes using the liquid type checking algorithm
(Section 5.4).

5.1 Approach

In liquid type checking, each expression is checked against its expected refined type
through a subtyping relationship that an SMT Solver proves.

Figure 5.1 represents the type checking performed on a simple annotated code com-
posed by a method and its invocation using a local variable. In this simple example,
there are four subtyping verifications. Starting in the inRange method, the return value
must be a subtype of the return type refinement, which means that the return expression
(lowerBound + 1) should have a value between the value of the parameters. However,
this relationship can only be proved if we consider the refinements of the parameters
since we can only be sure that the return expression is lower or equal to the upperBound

because the latter has a value strictly greater than lowerBound. The verification condition
used to prove this relationship is presented in Equation (5.1), where we use the parameters
refinements and the return expression to prove that it follows the written specification.

∀lowerBound : int . true ⇒
∀upperBound : int . upperBound > lowerBound ⇒

∀return : int . return = lowerBound+ 1 ⇒
return ≥ lowerBound ∧ return ≤ upperBound

(5.1)

∀value1 : int . value1 = 55 ⇒ value1 > 50 (5.2)

33
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upperBound

𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 > 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑
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is subtype of

𝑣𝑎𝑙𝑢𝑒1

𝑣𝑎𝑙𝑢𝑒1 == 55

is subtype of 𝑣𝑎𝑙𝑢𝑒1

𝑣𝑎𝑙𝑢𝑒1 > 50

𝑣𝑎𝑙𝑢𝑒1
𝑡𝑟𝑢𝑒

𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑1
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@Refinement("_ >= lowerBound && _ <= upperBound")
public static int inRange( 

int lowerBound, 
@Refinement("upperBound > lowerBound")
int upperBound) {

return lowerBound + 1;
}
...

@Refinement("_ > 50") int value = 55;

inRange(value, 10 + 40 ); //Error

𝑡𝑟𝑢𝑒

𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑

Figure 5.1: Visual representation of the subtyping relationships verified for a simple pro-
gram.

∀value1 : int . value1 = 55 ⇒ true (5.3)

∀value1 : int . value1 = 55 ⇒
∀upperBound1 : int . upperBound1 = 10 + 40 ⇒

upperBound1 > value1

(5.4)

The next verification condition is generated from the local variable declaration with
value assignment, where we ensure that the value stored in the variable (55 in the example)
is a subtype of the declared variable refinement (value must be greater than 50. This
relationship is verified through the expression in Equation (5.2) and directly proved by
the SMT Solver.

The last two verification conditions are drawn from the invocation of the inRange

↪→ method to ensure that the given arguments respect the refinements introduced in the
method definition. Since the refinement of the first parameter is omitted, we use the de-
fault refinement of true, which does not apply any restriction to the type. Therefore, any
value could be used for the first argument, and the subtyping relationship will always hold
as represented in Equation (5.3). Finally, the last verification ensures that the expression
used for the second argument is greater than the one used for the first argument, as pre-
sented in Equation (5.4). However, this relationship does not hold since the sum of 10 and
40 is not greater than the current value of value (55), which means that the specification
is not followed, and an error message will be displayed to the developer.

This simple example represents broadly the approach taken for the verification of the
refinements inside the Java language. The remainder of the current chapter details this
approach by describing verification conditions (presented inside the equations), and how
type checking handles refinements inside Java code.
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5.2 Verification Conditions

Verification conditions (VC’s) represent the subtyping relationships that must be verified
inside liquid type checking [29]. They work as an intermediate representation between
the program specification and the SMT Solver encoding. VC constraints are composed of
simple quantifier-free predicates and of implications, as represented in Equation (5.5).

∀x : B.p ⇒ c (5.5)

The presented implication states that for a variable x of type B, if the predicate p holds so
must the constraint c. These implications include the refinements of variables followed by
the final predicate that we mean to prove. Equation (5.6) is the last verification condition
presented in the previous section and contains two implications for the two variables used
in the example, and the final predicate is the condition we want to prove.

∀value1 : int . value1 = 55 ⇒
∀upperBound1 : int . upperBound1 = 10 + 40 ⇒

upperBound1 > value1

(5.6)

During the liquid type checking, the verification conditions are gathered and translated
to the SMT Solver. For the translation, we introduce all the variables presented in the
implications and join all implication predicates (as antecedents) with the negation of the
last predicate (as consequent). Thus, the formula sent is valid if the SMT Solver finds
it unsatisfiable. For the previous example, the logical formula sent to the SMT Solver is
represented in Equation (5.7).

value1 = 55 ∧ upperBound1 = (10 + 40) ∧ ¬(upperBound1 > value1) (5.7)

Since the formula is satisfiable (upperBound1 is less or equal to value1), and not unsatis-
fiable as expected, it is impossible to prove the VC and an error message will be displayed
to the developer.

5.3 Notation

To verify LiquidJava programs, we apply the liquid type checking algorithm. Type check-
ing rules formally define the type checking process. The following section (Section 5.4)
details the verification of LiquidJava features, introducing the type checking rules along
with the decisions and verification examples. Thus, the present section introduces the
notation used in the referred rules.

Figure 5.2 introduces the notation used in liquid type checking rules. We start by
defining the meta-variables used inside the rules, for types, variables, fresh-variables, ex-
pressions and state expressions. For the context, we split it in two: a global (Γ) and a local
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Meta-variables
B, T, U, . . . : types
α, β, . . . : fresh variables
x, y, . . . : variables
a, b, . . . : state expressions
e, p, . . . : expressions

Typing context
Γ : global context
∆ : local context

Types
B : base Java type
{x : B|e} : refined type
f : {xi : Ti|ei}

a,b−→ {v : T |ev} : function type

Type Operations
U <: T : subtyping relationship, reads as U is a subtype of T
e[x := y] : substitution, reads as e with x substituted with y
obj[a → b] : change the object state from a to b, reads as obj changes fromstate a to state b

Figure 5.2: Notation.

(∆); to store the instance values of the variables in a distinct place from the declaration
refinements. Both contexts can store variables and methods. Variables are stored with
the basic Java type (B) and the refinement (e). As for methods, we store their parameters
(represented in the notation by the overline as a limited sequence of variables), the return
type and the from-to state transitions allowed in the method (represented by

a,b−→). The
rules may also use type operations, specifically subtyping relationships, substitutions and
change of object state.

All terms are assumed to be in Administrative Normal Form (ANF), as standard in
Liquid Types [29]. ANF requires terms to be represented either as constants or variables
to ensure the decidability of the type checking algorithm.

5.4 Refinements Verification

This section describes the type checking rules, including the verification steps taken to
prove if all refinements are respected or if any of them is violated. Thus, we present the
verification of declaration, assignment and access of variables (Section 5.4.1) and class
fields (Section 5.4.2), the use of branch conditions (Section 5.4.3) that help in the veri-
fication of return values of methods, and the verification of invocations of class methods
(Section 5.4.4) and methods from external libraries (Section 5.4.5). Finally, we present
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the declaration of class methods (Section 5.4.6) that model object state with ghost prop-
erties and state sets, and that can override methods that belong to superclasses. The type
checking rules are introduced along with the verification features with the aid of exam-
ples, and the complete set of rules can be found in Appendix A.

5.4.1 Variables

Variables appear in declarations, assignments and as expressions.

5.4.1.1 Variable Declaration

1 @Refinement("a > 0")

2 int a;

Listing 5.1: Variable Declaration Example.

Variables are the simpler elements of code to which we can add refinements. The
refinements will ensure that the variable only is assigned values that are a subtype of the
annotated refinement type.

Γ, {x : T, e}; ∆ ⊢ S valid

Γ;∆ ⊢ @Refinement(e) T x; S valid (var-decl)

Equation (var-decl) represents the typing rule for the variable declaration where we
introduce its basic type and refinement in the global context. For example, the declaration
from Listing 5.1 would add to the context {a : int | a > 0}.

5.4.1.2 Variable Assignment and Variable Access

In imperative programming languages, like Java, variables are mutable and can be as-
signed multiple values throughout the program. Pierce [50] presented a way of saving
these values as references using operations of allocation, dereferencing and assignment to
store and retrieve the concrete values. In this approach, a reference is stored in a cell of
type Ref T, any reference stored in this cell needs to be a subtype of T, and a dereference
of the cell produces a value of type T.

Chung [13] names the previous approach as weak updates because the dereference
of the cell always produces a value with the weaker supertype T instead of the stronger
type of the stored value. Using weak updates would produce a type error in Listing 5.2,
where that example is perfectly correct in the Java semantics. Thus, we follow the strong
updates approach.

To save the declared refinement of the variables and the refinement of each assigned
expression, we split the information into the global and local contexts. Thus, the refine-
ment introduced in the declaration is stored in the global context (Γ), and the refinements
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1 @Refinement("a > 0")

2 int a = 10; //(a == 10) <: (a > 0) ~> Correct

3 @Refinement("b > 5")

4 int b = a; //(b == a && a > 0) <: (b > 5) ~> Type Error

Listing 5.2: Variable assignments under a weak updates type checking.

Γ ∆
{a:int | a > 0} {a:int | a == 10}

Figure 5.3: Split of the storage of variable’s refinements into local and global context.

of assignments are stored in the local context (∆), as exemplified in Figure 5.3 for the
previous example. This way, for the liquid type checking of assignments, we verify if the
assignment is a subtype of the refinement of the variable stored in the global context, and
if it is, the new refinement is added to the local context, as formalized in Equation (var-
assign).

x : T ∈ Γ Γ;∆ ⊢ e : K Γ;∆ ⊢ K <: T Γ;∆, x : K ⊢ S valid

Γ;∆ ⊢ x = e; S valid (var-assign)

x : T ∈ ∆
Γ;∆ ⊢ x : T (var)

To ensure that the stronger types of the variables are used when they are referred to in
the code, we get their refinement from the local context, as presented in Equation (var).
With this approach, the example of Listing 5.2 becomes valid since the verification con-
ditions for the assignment of b change to the ones presented in Equation (5.8).

∀b : int . b = a1 ⇒
∀a1 : int . a1 == 10 ⇒

b > 5

(5.8)

To distinguish between the usage of the declared refinement from the remaining (stronger)
refinements, we append a number suffix to the name of the variable stored in the local
context. This also allows us to distinguish different values that the variable might have
during its lifetime. The verification of the last assignment in Section 5.4.1.2 represents
this situation, where it is helpful to distinguish different assignments of a to prove that the
assignment to c respects the declaration refinement.

However, suppose a variable has a global refinement that refers to other variables. In
that case, the verification conditions will use the global refinements of the latter variables
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1 @Refinement("a > 0")
2 int a = 10;
3 @Refinement("b > 5")
4 int b = a;
5 a = 50;
6 @Refinement("_ > 55")
7 int c = a + b;

∀c : int . c == a2 + b1 ⇒
∀a2 : int . a2 == 50 ⇒
∀b1 : int . b1 == a1 ⇒
∀a1 : int . a1 == 10 ⇒

c > 55

(5.9)

Figure 5.4: Code and verification conditions on usage of variables assignments in different
code places.

since those refinements are always true in any code location. This way, there is no need
to track the effects of an assignment in other variables besides the assignee. For example,
in Listing 5.3, variable d has a global refinement that depends on a. To ensure that d has
a value always smaller than a, it needs to have a value that respects the global refinement
of a. Thus the first assignment produces a type error, but the second one is correct.

To make the first assignment also correct, the type-checking algorithm would need to
keep track of the dependencies between variables and verify if the refinements of the de-
pendent variables still hold with new assignments. Therefore, using the previous example,
each time a changes its value, there would be a need to verify if the new value respects
the global refinement of a and also check if the value assigned to d still respects the re-
finement. Listing 5.4 illustrates this option with an example where the value assigned to
a provokes the invalidity of the refinement of b.

Given the added number of verifications, we decided not to follow this option. Thus,
each time a variable is assigned a new value, it is only necessary to check if the value
respects the variable refinement without checking if other variables that depend on the
changed one still respect the refinements.

1 @Refinement("a > 0")
2 int a = 10;
3 @Refinement("d < a")
4 int d = 7; // (d == 7) && (a > 0) <: (d > a) ~> Type Error
5 d = −1; // (d == −1) && (a > 0) <: (d > a) ~> Correct

Listing 5.3: Use of global refinements of variables
within other refinements.

1 @Refinement("a > 0")
2 int a = 10;
3 @Refinement("d < a")
4 int d = 7; // Correct
5 a = 5; // Correct for a,

↪→ refinement of d
↪→ becomes incorrect

Listing 5.4: Other tracking
option (not implemented).

5.4.2 Class Instance Fields

It is possible to introduce refinements to model the class fields and ensure that the refine-
ments hold in any method where the fields are assigned new values. Listing 5.5 shows the
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class Color that defines a color by its RGB value and stores each color component in one
field, making the total of three fields all with the same value limitations on the range of 0
and 255. To avoid repeating these refinements, we created the RGB alias and used it as a
refinement to each field using the variable name or the anonymous variable.

1 @RefinementAlias("RGB(int v) { v >= 0 && v <= 255}")
2 public class Color {
3 @Refinement("RGB(r)") int r;
4 @Refinement("RGB(_)") int g;
5 @Refinement("RGB(_)") int b;
6 ...
7 }

Listing 5.5: Introduce refinements in class fields.

Wherever an assignment to one of the fields occurs, the refinement will be verified using
the same principles of variable verification.

5.4.3 Branching Conditions

Inside branches of if statements, there are additional assumptions available, based on
whether the branching condition was true or not.

Assuming that the expressions inside if conditions are possible to translate to ANF,
we can convert them into predicates and use them to verify the code within the branch
scope.

Γ ⊢ e : bool Γ, {α : int|e} ⊢ S1 valid Γ ⊢ S2 valid

Γ;∆ ⊢ ( if (e){S1} S2 ) valid (if-then)

Γ ⊢ e : bool Γ, {α : int|e} ⊢ S1 valid Γ, {β : int|¬e} ⊢ S2 valid Γ ⊢ S3 valid

Γ;∆ ⊢ ( if (e){S1} else {S2} S3 ) valid

(if-then-else)
Equation (if-then) and Equation (if-then-else) represent, formally, the introduction of

a fresh variable with the refinement from the if condition into the context both for the then
and else branches. Adding the branch condition as a refinement in the context, allows us
to use the branch information to verify statements inside the desired scope.

5.4.4 Method Invocations

Method types describe the type of the parameters and the expected return type. The return
type is used to verify if the method returns the expected value. Parameter types are used
to validate the correct invocation of the method.
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1 @Refinement("_ >= a && _ <= b")
2 public static int inRange(int a,
3 @Refinement("b > a")
4 int b){
5 return a + 1;
6 }
7 ...
8 inRange(10, 9);//Error

VC for return:
∀ret : int . ret == a+ 1 ⇒

∀a : int . true ⇒
∀b : int . b > a ⇒

ret ≥ a ∧ ret ≤ b

VC for invocation:
∀b1 : int . b1 == 10 ⇒
∀a1 : int . a1 == 9 ⇒

b1 > a1

Figure 5.5: Verification of inRange method return and invocation.

Parameter types are declared immediately before the parameters basic types. The
return refinement is declared before the method signature, above the return type, where
the anonymous variable is an alias for the return value.

Figure 5.5 presents a method and the verification conditions for both the return and
invocation. First, we verify if the return value is within the range of both parameters,
which can only be valid if we consider that b is strictly greater than a, as represented
by the refinement. The verification condition for the return is also represented in the
figure, where we can see the substitution of the return value for the ret variable and the
sequence of refinements used to prove that the return value follows the desired refinement.
Secondly, we verify he invocation of the inRange method with the given parameters where
we find an error, since the second parameter does not follow the refinement, being lesser
than the first parameter.

To address more complex methods, we also added support for verifying recursion
inside methods. To implement the verification of a recursive call, we only need to verify if
the arguments respect the declared refinements. Additionally, if the recursive call is inside
the return expression, we can use the return refinement of the method as the refinement of
the invocation.

Figure 5.6 presents an example that shows the verification on a method with recursive
calls and if statements. In the fib method, the only parameter has a refinement that should
be respected inside the recursive calls. As detailed in the first verification condition,
we can only conclude that the invocation of fib(n-2) respects the parameter refinement
because, in that scope, we know that the value of n is greater than 1, so n − 2 always
will be greater or equal to zero. As for verifying the returned expression type against the
expected return type, we use the return refinement of the method and the branch condition
to verify that the refinement is respected.

At the moment, we can only verify loop instructions through recursion, all other loop
constructs (e.g: for, while, for-each, etc.) are not verified and represent a part of future
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1 @Refinement( "_ > 0 && _ >= n")
2 public static int fib(
3 @Refinement("n >= 0")
4 int n){
5 if(n <= 1)
6 return 1;
7 else
8 return fib(n−1) + fib(n−2);
9 }

VC for second recursive invocation:
∀β : int . ¬(n ≤ 1) ⇒

∀n2 : int . n2 == n− 2 ⇒
∀n : int . n ≥ 0 ⇒

n2 ≥ 0

VC for return inside else
∀β : int . ¬(n ≤ 1) ⇒

∀ret : int . ret == fib1 + fib2 ⇒
∀fib1 : int . f ib1 > 0 ∧ fib1 ≥ (n− 1) ⇒
∀fib2 : int . f ib2 > 0 ∧ fib2 ≥ (n− 2) ⇒

ret > 0 ∧ ret ≥ n
Figure 5.6: Verification of the body of the fib method.

work.

5.4.5 External Libraries

Until now, we have only seen how we can introduce refinements in code that we are devel-
oping. However, most projects use existing libraries without changing them. Therefore,
external libraries need to be annotated with refinement types so that code with external
invocations can be verified. To this end, users can create interface files that contain the
annotated signatures of the methods from the library they want to use. Section 5.4.5
represents a part of the annotated file for the java.lang.Math library.

1 @ExternalRefinementsFor("java.lang.Math")
2 public interface MathRefinements {
3 @Refinement("(arg0 > 0)?( _ == arg0):(_ == −arg0)")
4 public int abs(int arg0);
5

6 @Refinement("(a > b)? (_ == a):(_ == b)")
7 public int max(int a, int b);
8

9 @Refinement("(a > b)? (_ == b):(_ == a)")
10 public int min(int a, int b);
11

12 @Refinement(" _ > 0.0 && _ < 1.0")
13 public long random(long a, long b);
14 }

To annotate an external library, we start by creating an interface and including the
name of the external library inside the @ExternalRefinementsFor annotation. Then, for
each method of the class, we can introduce refinements for the parameters and the re-
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turn value. Afterwards, external libraries invocations are verified as any other method
invocation.

Since refinements for libraries are the same independently of the client code, we added
the refinements of some Java libraries and made those files available in a Github reposi-
tory1 so that developers can find the desired libraries annotated, and the community can
add more library annotations.

5.4.6 Method Definitions

Class methods can have refinements in the parameters and return value, as we saw before,
but they can also have @StateRefinement annotations that model the behaviour of the
object. Within the @StateRefinement annotations it is possible to introduce the expected
type state of the object when the method is invoked (in the from argument) and the type
state of the object at the end of its execution (to argument).

Γ, {f : {xj : Tj|ej}
a,b∗−−→ {v : T |e}}, {expret : T |e} ⊢ S, S1 valid

Γ;∆ ⊢ @StateRefinement(from=ef1, to=et1)
...
@StateRefinement(from=efn, to=etn)
@Refinement(e) public T f (@Refinement(ej) Tj xj) {S1} S2 valid

(met-decl)
To store the method declaration in the context, we follow the rule presented in Equa-

tion (met-decl), where we store for the method f all the parameters with their types and re-
finements (which is represented by the vector of xj : Tj|ej), the return type and its refine-
ment, and also all the possible state transitions represented with the @StateRefinement’s
annotations. These transitions are represented in the rule by the symbol

a,b−→, where a rep-
resents the union of all possible from states (a =

∨n
i=1 efi;) and b represents the to states

available according to the from state used (
∨n

i=1 efi → eti).
As for the invocation of the methods with a target object, we need to check the pa-

rameters used in the invocation and the state of the target object at the time of invocation.
Finally, when the invocation is finished, we must change the object’s current state inside
the context. The rule in Equation (met-inv) can formally describe this type checking.

Γ ⊢ yi : Ti Γ;∆ ⊢ obj : U Γ ⊢ U <: {β : U |a}
f : {xi : Ti}

a,b−→ {v : T | e} ∈ Γ Γ;∆, obj[a → b] ⊢ S valid

Γ;∆ ⊢ obj.f (yi) : {T |e[xi := yi]} S valid

(met-inv)
The same rule applies to methods that do not have any @StateRefinement annotation

and the class is not modelled using States or Ghost properties, since it is identical to have
the object type states as true (@StateRefinement(from="true", to="true")).

1https://github.com/CatarinaGamboa/liquid-java-external-libs

https://github.com/CatarinaGamboa/liquid-java-external-libs
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The type state used to model the class can depend on ghost properties and on states
from state sets. When a ghost property or state set is created for a class, an instance of
the class always has to have a value for the property and has to be in one of the allowed
states, as will be detailed below with examples.

5.4.6.1 Ghost Properties

When a ghost property is created, it is converted into an uninterpreted function that can
only have one value at a time for a given object. To ensure that at every moment the
ghost has a defined value, we have a default starting value (e.g., 0 when the property
has type int) and when the property is not referred in the method transition states, we
assume that its value has not changed (ghost_prop(this)== ghost_prop(old(this))).
The old keyword can be used inside refinements to refer to the previous version of an
object, specifically the object version at the time of the method invocation (similarly to its
meaning in other languages such as JML [36] and Dafny [37]).

Figure 5.7 presents the annotation of the class java.util.ArrayDeque using the size

↪→ ghost property. The method representing the constructor (the first of the sequence)
has no @StateRefinement which means that size will start with the default value of 0.
Additionally, the size() method does not change the internal state of the object, since it
represent a getter method, thus it does not have any @StateRefinement annotation and we
can assume that the size property has the same value as before. Finally, the two methods
that change the value of size are add and remove. While add only has a to state, which
means we can invoke the method in any state of the object, remove also includes a from

state restraining the method invocation to when the size is greater than zero.
Below the annotation of the ArrayDeque library, we have a small client code that,

along with Equation (5.10), exemplifies the liquid type checking of a class with a ghost
variable. To check the invocation of the remove() method and ensure that the size of ad
is positive, we need to get the previous versions of the object since together they represent
the total value of the size property. Thus, to prove that size(ad2) > 0, we need to use
the state of the object from the moment it was created until the current state. Inside the
verification conditions, it is possible to see that the old(this) invocations were translated
to the previous state of the object; for example, in the second line, old(ad1) was translated
to ad0, the object state at the start of the add method.

5.4.6.2 StateSet

Each @StateSet created for a class is represented by an uninterpreted function with as
many possible values as states added inside the annotation. We ensure that the object is
always in one of the states from each set, and, again, we assume that when there is no
state transition, the object state remains in the same state.
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1 @ExternalRefinementsFor("java.util.ArrayDeque")
2 @Ghost("int size")
3 public interface ArrayDequeRefinements<E> {
4

5 public void ArrayDeque();
6

7 @StateRefinement(to = "size(this) == (size(old(this)) + 1)")
8 public boolean add(E elem);
9

10 @StateRefinement(from = "size(this)> 0",
11 to = "size(this) == (size(old(this)) − 1)")
12 public void remove();
13

14 @Refinement("_ == size(this)")
15 public int size();
16 }
17 ...
18 ArrayDeque<Integer> ad = new ArrayDeque<Integer>();
19 ad.add(10);
20 ad.size();
21 ad.remove();

∀ad0 : ArrayDeque . size(ad0) == 0 ⇒
∀ad1 : ArrayDeque . size(ad1) == size(ad0) + 1 ⇒

∀ad2 : ArrayDeque . size(ad2) == size(ad1) ⇒
size(ad2) > 0

(5.10)

Figure 5.7: ArrayDeque verification with ghost property size.

To exemplify the type checking when a class is modelled through a state set, we intro-
duced annotations to the Socket class2 from the external library java.net, as presented
in Listing 5.6. The Socket class contains methods that are underlying connected by a pro-
tocol order specified only through informal documentation. This can lead to an incorrect
usage of the library: as an example, the connect method should not be called multiple
times sequentially, or an exception will occur3. A state machine can represent the pro-
tocol that a client of the Socket class must use, as shown in Figure 5.8, and it can be
modelled in the code using the @StateSet and @StateRefinement annotations. In this
example, the first method represents the constructor, thus containing only a to state with
the unconnected state, however, if the constructor had no annotation we would assume
that the starting state of the object would be the first of the state set (unconnected in this
case), so, for this example, it would be optional to include the constructor annotation.

2https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
3https://www.tabnine.com/code/java/methods/java.net.Socket/bind?snippet=

59225ab84002b00004dbfef2

https://www.tabnine.com/code/java/methods/java.net.Socket/bind?snippet=59225ab84002b00004dbfef2
https://www.tabnine.com/code/java/methods/java.net.Socket/bind?snippet=59225ab84002b00004dbfef2
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The bind and connect methods have a simple state transition, no different from what
we analysed in previous examples. The sendUrgentData method only contains a from

state, requiring the object to be in a connected state when the method is invoked and does
not change the object state, thus the method does not need a to state. As for the close

method, it can be invoked in any state of the object, except the closed state, so adding a
from type state with all the available states as options (from = "unconnected(this)||

↪→ bound(this)|| connected(this)") is the same of having the negation of the closed

state.
The verification of the state transitions using a state set is similar to the verification

when using ghost properties. When a method contains a from state we compare the current
object state with the expected one, and if it is valid, we change the object to the to state
and store it in the context. The client code in Listing 5.6 represents an error when invoking
close when the object is already in the closed state, as emphasized by Equation (5.11).

5.4.6.3 Combining State Sets and Ghost properties

It is also possible to model a class with both state sets and ghost properties, have refine-
ments on parameters and return of methods, and also have field annotations.

Listing 5.7 represents a simplified version of an Auction class where we use refine-
ments to model the expected values of the method’s parameters, as well as the steps of
the auction and the properties that should be enforced. Specifically, this class models the
following properties:

• There are three sequential states for the auction: open, close and prizeSent;

• The clients that can bid have an id number (positive), and the same client cannot
bid twice sequentially (raising their own bid);

• The bid values need to be positive and always greater than the last placed bid;

• After the auction is closed, the prize must only be sent if a client placed a bid.

Below the annotation of the Auction class, we can find a client code exemplifying
three refinement type errors due to incorrect use of the protocol (each error presented
assumes that the previous errors were removed).

5.4.6.4 Class Inheritance

In Java, we can define hierarchies by describing the classes that extend the behaviour of
others. Since subclasses have the behaviour of the parents and extend it further, they will
also automatically inherit the refinements provided to the class methods, which means
that the user does not need to rewrite the same annotations. However, if the subclass aims
to override a method and its refinements, the new refinements must follow the Liskov
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1 @ExternalRefinementsFor("java.net.Socket")
2 @StateSet({"unconnected", "bound", "connected", "closed"})
3 public interface SocketRefinements {
4 @StateRefinement(to="unconnected(this)")
5 public void Socket();
6 @StateRefinement(from="unconnected(this)",
7 to="bound(this)")
8 public void bind(SocketAddress add);
9 @StateRefinement(from="bound(this)",

10 to="connected(this)")
11 public void connect(SocketAddress add);
12 @StateRefinement(from="connected(this)")
13 public void sendUrgentData(int n);
14 @StateRefinement(from="!closed(this)",
15 to="closed(this)")
16 public void close();
17 }
18 ...
19 //Client code (addr1, addr2 and port defined before)
20 Socket socket = new Socket();
21 socket.bind(addr1, port);
22 socket.connect(addr2);
23 socket.sendUrgentData(90);
24 socket.close();
25 socket.close();//Error

Listing 5.6: Annotation of Socket class using a state set.

connect

bound

bind

unconnected

connected

closed

sendUrgentData

close

Figure 5.8: Finite State
Machine that represents
the protocol.

∀socket0 : Socket . stateset1(socket0) == unconnected [line 20] ⇒
∀socket1 : Socket . stateset1(socket1) == bound [line 21] ⇒

∀socket2 : Socket . stateset1(socket2) == connected [line 22] ⇒
∀socket3 : Socket . stateset1(socket3) == stateset1(socket2) [line 23] ⇒

∀socket4 : Socket . stateset1(socket4) == closed [line 24] ⇒
!(state− set1(socket4) == closed)

(5.11)

Figure 5.9: Socket class annotation and client verification.
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1 @StateSet({"open", "closed", "prizeSent"})
2 @Ghost("int currentValue")
3 @Ghost("int clientNumber")
4 public class Auction{
5 @StateRefinement(to="open(this) && currentValue(this) == start && clientNumber(this)

↪→ == −1")
6 public Auction(@Refinement("_ >= 0")int start){...}
7

8 @StateRefinement(from="currentValue(this) < value && clientNumber(this) != client",
9 to = "currentValue(this) == value && clientNumber(this) == client")

10 public void bid(@Refinement("_ > 0") int client, @Refinement("_ > 0") int value){...}
11

12 @StateRefinement(to = "closed(this)")
13 public void endAuction(){...}
14

15 @StateRefinement(from="closed(this) && clientNumber(this) != −1 && currentValue(this
↪→ ) > 0", to = "prizeSent(this)")

16 public void sendPrize(){...}
17

18

19 public static void main(String[] args){
20 Auction auction = new Auction(300);
21 auction.bid(1, 350);
22 auction.bid(2, 500);
23 auction.bid(1, 400);//Error, due to the value bid
24 auction.bid(2, 600);//Error, due to same client
25 auction.sendPrize();//Error, sendPrize before end of auction
26 auction.endAuction();
27 }
28 }

Listing 5.7: Annotation of class with ghost properties and state sets simultaneously.
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substitution principle [41]. This principle ensures that any operation applied to a super-
type must be possible to apply to the subtype and have similar results. To ensure this
behaviour, the pre-conditions of the subclass should be broader than the super-classes
pre-conditions, and the post-conditions should be narrower.

Listing 5.8 presents a simple example of the relationship in super and subclass refine-
ments for the same method. In the example, Animal is the superclass of Mammal and has
the method untilMaximumLifespan that returns the remaining time to achieve the maxi-
mum lifespan. Following the Liskov principle, the age parameter has a broader range in
the subclass when compared to the superclass ((age >= 0) :> (age > 0)) to ensure that
any client that invokes the method with a valid value for the supertype can also invoke the
method from the subclass. For the return refinements, we ensure that the return value of
the subclass is within the range of the superclass ((_ < 250) <: (_ < 11000)), so that the
client receives a value inside the expected limit. The numbers that bound the return values
were inspired by the maximum lifespan in the animal realm in general and in mammals4.

1 public class Animal{
2 @Refinement("_ < 11000")
3 public untilMaximumLifespan(@Refinement("_ > 0") int age){...}
4 }
5

6 public class Mammal extends Animal{
7 @Refinement("_ < 250")
8 public untilMaximumLifespan(@Refinement("_ >= 0") int age){...}
9 }

Listing 5.8: Refinements in Super and Subclass.

5.4.7 Discussion

This section presented the current type system of LiquidJava and the formal definition
of the main features of the language. Concretely, for variables, we presented the formal
verification for their declaration, assignments and accesses, and presented a similar veri-
fication for class fields. For methods, we defined the verification of their invocations and
return values, the use of recursion, and how we can use branch conditions inside type
checking. We also showed how to introduce refinements for external libraries and use
them inside the code to be verified. Finally, we introduced the declaration of class meth-
ods that can include state transitions using ghost properties and state sets to model the
object state.

We also presented the verification on methods declarations that override the refine-
ments from superclasses; however, this feature remains to be formalized, despite being
implemented in our prototype.

4https://www.nationalgeographic.com/animals/article/animals-oldest-sponges-whales-fish
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Other Java features that we would like to verify but are not currently supported include
loop constructs, expansion on object aliasing, and methods with objects as parameters.
Loop constructs such as while and for are used in many programs, which makes them
essential to be included in the verification system. Therefore, it is vital to introduce loop
invariants in the code modelling, which represents one of the main challenges since Java
annotations cannot have loops as targets (they can only be attached to variables, methods,
fields, parameters and classes). Aliasing, on another end, is typical in languages that
allow mutable objects since it happens when multiple variables point and can change
the same memory address. Hence, supporting the tracking of aliasing on objects allows
the verification of more complex data structures and real-world programs. Finally, class
methods usually receive other objects as parameters, but, at the moment, it is not possible
to use their state in other refinements or make a state change on them during a method. To
add this feature, it is necessary to change the type checking algorithm for methods and,
for example, include the changes of parameters in the state refinements of the method.



Chapter 6

An Implementation of LiquidJava

Having a formalization of LiquidJava in place, this chapter describes our implementation
of the type checker detailing the system architecture (Section 6.1.1), the verification with
the SMT Solver (Section 6.1.2), and the error messages (Section 6.1.3). Finally, the
chapter describes the type checker integration in an IDE (Section 6.2), with the goal of
improving the usability of LiquidJava.

6.1 LiquidJava System

This section adds the implementation details to the system design (introduced in Sec-
tion 3.2.2) by describing the architecture of the system, the verification integration with
the SMT Solver and the error messages.

6.1.1 Architecture

The compilation pipeline of LiquidJava is summarized in Figure 6.1 (extending the scheme
presented in Figure 3.1).

The system is built on top of Spoon (introduced in Section 3.2.2), a library for Java
source code analysis and transformation which offers a metamodel of the abstract syntax
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Figure 6.1: Architecture of the LiquidJava System.
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tree (AST) of the input program allowing new compiler passes to access and transform
the AST. Our implementation traverses the AST to perform the liquid type checking.

Refinement annotations are parsed using the ANTLR framework [48], configured with
the refinements grammar (presented in Section 4.2). Refinements are parsed and stored
as metadata of the annotated AST elements.

Because the Spoon AST is already enriched with direct links to declarations of vari-
ables, fields and methods, the global and local contexts are not explicitly represented in
our implementation.

When traversing elements, it is often required to verify subtyping relationships. The
subtyping assertion is first converted into a VC, which is discharged to an SMT Solver.
In this implementation, we use Z3 [16], a SMT Solver created by Microsoft Research
designed for an easy incorporation in software development, verification and analysis.
However, our implementation is prepared to, in the future, use another SMT Solver or
even let the developer decide which SMT Solver is better suited for their needs.

6.1.2 SMT-based Verification

In our implementation, verification conditions do not usually refer to all the variables in
the context.

Our implementation filters only the variables in the VC that appear in the condition
we are trying to prove, or that have a refinement. For instance, the example in the Socket
class (Figure 5.8) can be flattened to use only one variable (Equation (6.1)).

∀socket4 : Socket . stateset1(socket4) == closed ⇒
!(stateset1(socket4) == closed)

(6.1)

VCs are then translated to the SMTLib language and verified using the SMT solver.
For the translation to SMTLib, we use the Java API of Z3 through the Z3-TurnKey Dis-
tribution1, since it eases the setup of Z3 into Java projects. After sending the verification
conditions to the SMT Solver, the system waits for the result of the computation. If the
result is UNSAT the verification continues, but if the result is SAT, the verification process
ends (as explained in Section 5.2) and an error is displayed to the developer.

6.1.3 Error Messages

Whenever a refinement is not respected, a refinement type error message is sent to the
user. The error message includes a brief description of the error and a detailed explana-
tion of the verification performed. For the description, we only display an overall error
message and the condition that was not possible to verify. As for the complete informa-
tion, the explanation includes the location of the element that did not pass the verification,

1https://github.com/tudo-aqua/z3-turnkey
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the expected type and the verification condition sent to the SMT Solver. However, the
verification conditions might be hard to track without knowing where each local variable
was created. Thus, we also introduced a translation table with the code that originated the
local variable and its location.

An example of an error message displayed to the developer for the client code of
the ArrayDeque class and specification is shown in Figure 6.2. In the error message is
possible to see the two distinct parts divided by a horizontal bar (line 3). Above the bar
is the summary of the error, and below is the detailed explanation. Within the detailed
explanation, we present the code of the erroneous line followed by the expected type that
was not possible to verify. Afterwards, we present the State found with the verification
conditions used to verify the required condition, where we can see the distinct names
for different local versions of p. Finally, to connect the instance names with the location
where they were created, we present the translation table (from line 21 to 24).

However, the presented information might still not be the most useful for the devel-
opers, since some might not have the patience to understand the verification conditions or
the translation table. Thus, one possible improvement could be the addition of a counter-
example for the verification condition. The messages for other more general errors, such
as syntax errors, could also be improved to provide small hints that would help the devel-
oper correct the code.
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1 ArrayDeque<Integer> p = new ArrayDeque<>();
2 p.add(2);
3 p.size();
4 p.remove();
5 p.remove();

1 Refinement Type Error: Failed to check state transitions.
2 Expected possible states:(size(this) > 0)
3 ______________________________________________________
4 Failed to check state transitions when calling remove() in:
5 p.remove()
6

7 Expected possible states:(size(this) > 0)
8

9 State found:
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 #p_27:ArrayDeque, (size(#p_27) == (size(#p_25) − 1)) =>
12 #p_25:ArrayDeque, (size(#p_25) == size(#p_24)) =>
13 #p_24:ArrayDeque, (size(#p_24) == (size(#p_22) + 1)) =>
14 #p_22:ArrayDeque, (size(#p_22) == 0)
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16

17 Instance translation table:
18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 | Variable Name | Created in | File
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 | #p_22 | ArrayDeque<Integer> p = new ArrayDeque<>() | Test2.java:1, 1
22 | #p_25 | p.size() | Test2.java:2, 1
23 | #p_24 | p.add(2) | Test2.java:3, 1
24 | #p_27 | p.remove() | Test2.java:4, 1
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 Location: (../Test2.java:5)

Figure 6.2: Client code of ArrayDeque with error and respectively error message.
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6.2 Integration with IDE

Nowadays, most developers prefer to use integrated development environments (IDEs)
for software development since they integrate services that enhance productivity, such as
content completion, documentation popups, and real-time type checking [31]. IDEs can
provide instant feedback to developers while they are implementing the code, and help
them correct errors before executing the programs.

To enhance the usability of LiquidJava, we created an IDE plugin to allow the de-
velopers to use LiquidJava inside the development environment and use the verification
information to modify the code while they are developing the program.

We used the Language Server Protocol (LSP) [64] to develop the plugin, since it de-
couples the implementation of the language server from the development of the editor’s
interface. By using LSP we only need to create one implementation of the LiquidJava lan-
guage server, and afterwards it can be paired with a client for any editor that implements
LSP (e.g., Visual Studio Code [65], Eclipse [23], Emacs [63]).

Figure 6.3: IDE Plugin reporting an error.

We chose to create the client plugin for Visual Studio Code, given that it is one most
used IDEs for Java development [1, 19] and has more documentation on the interaction
with LSP, since both are from Microsoft. However, as mentioned before, this does not
prevent us from creating plugins for other editors in the future.

The main features of the plugin can be seen in Figure 6.3 and include:

• Error Reporting – The plugin informs the user, in real-time, of the refinement type
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errors found, underlining the exact location of the code elements whose specifica-
tion could not be proved;

• Error Information – A detailed version of the error can be found if the user hovers
the code, getting all the verification conditions used to try to prove the specification
and their location. To get an overview of all errors and warnings of the project,
the developer can used the problems tab, where a simplified version of the error is
presented.

The LiquidJava website2 [26] contains the plugin available for download and exam-
ples for the usage of refinements in variables, methods and classes.

Language Server Protocol

The Language Server Protocol [64] aims to standardize the communication between lan-
guage servers that provide language-specific information and the development tools. This
way, language developers only need to create one instance of the language server, and the
tools for development can integrate multiple languages with minimal effort.

The interaction between the language server and the client tool is accomplished using
JSON-RPC since they run separate processes. Therefore, whenever the tool detects a user
action (e.g., saves a file, opens a file), it notifies the language server, giving it a chance to
publish information to the tool (e.g., location of definitions, autocomplete proposals).

Within the LiquidJava plugin, the connection to the language server is only started if
the open project contains the liquid-java-api.jar; otherwise, a notification is given to the
developer with the information that the plugin will not connect since it did not find the
API. However, if the API is present in the project, the client tool will start the language
server and connect to it. The LiquidJava language server receives events of change of Java
files and verifies if they have refinement type errors. Thus, the server receives the changed
documents, performs the type checking and, if it finds an error, creates a Diagnostic object
(recognized by the protocol). The sent Diagnostic contains the diagnostic type (Error
or Warning), its message and location (filename, line number and columns of start and
finish). The list of Diagnostics is then published into the editor, which underlines the
error or warning and provides the error message to the developer. In Visual Studio Code,
the error message and overview is shown in the Problems tab, and the explanation of the
verification is only available upon hovering over the underlined code.

Since the LiquidJava plugin only provides an extra verification for Java code, it must
work in complement with an existing Java plugin. Thus, the plugin was created to com-
plete the plugin Language Support for Java(TM) by Red Hat3, one of the more popular

2https://catarinagamboa.github.io/liquidjava.html
3https://marketplace.visualstudio.com/items?itemName=redhat.java

https://marketplace.visualstudio.com/items?itemName=redhat.java
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plugins for Java development in VSCode, which already performs the common editor
features such as type checking, syntax highlighting, code completion and others.

Current Limitations

The LiquidJava language plugin was developed as a prototype with the main intention of
providing the refinement type errors to the developers. However, it is possible to integrate
other information into the plugin, such as an autocomplete that includes defined class
states or properties, or hover information that contains the refinement of the local variable
at the desired location. Moreover, since this plugin was only a prototype, the verification
is not as efficient as it could because each time a document changes, the liquid type
checking is performed for all the project files and not only the changed part.
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Chapter 7

Evaluation

To evaluate the usability of our approach, we conducted a user study with volunteer Java
developers, to answer the following research questions:

RQ1 Are refinements easy to understand?

RQ2 Is it easier and faster to find implementation errors using LiquidJava than with plain
Java?

RQ3 How hard is it to annotate a program with refinements?

RQ4 Are developers open to using LiquidJava in their projects?

With the intent to answer these questions, we designed an experiment to gather in-
formation on the usability and understanding of LiquidJava by asking the participants to
complete a series of tasks related to the subject.

In this chapter, we present the experimental protocol (Section 7.1), a description of
the participants and their background (Section 7.2), a detailed analysis of the tasks and
their answers (Section 7.3 to Section 7.6) and, finally, we discuss the results of the study
(Section 7.7).

The figures and listings referred during this chapter are in Appendix B due to space
constraints.

7.1 Study Configuration

The intended audience for this study was developers who are familiar with Java, but not
necessarily familiar with refinement types or Liquid Java. Section 7.2 will describe the
participants and the process used to select them.

We conducted synchronous study sessions through the Zoom video platform, and gave
the participants a survey with the study guidelines and answer placeholders, and a GitHub
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repository with the study files 1. During the study, the participants were required to install
the LiquidJava plugin extension, and to this end, they needed to have the Visual Studio
Code application installed with the jdk11 and the Language Support for Java(TM) by Red
Hat extension enabled. The participants were also asked to share their screen with the
VSCode editor and the document with the answers.

The study was divided into six parts, as follows:

• Task 1: Find the error in plain Java – Participants had to find and fix semantic
errors in two Java programs, where the implementation did not correspond to the
informal documentation presented in the associated Javadoc.

• Task 2:Interpreting Refinements without prior explanation – Participants had to
interpret the refinements present in different sections of the code (variables, meth-
ods and classes) and use them correctly and incorrectly. The examples used and
answers are detailed in Section 7.3. This task aim to answer RQ1 by counting the
correct uses of the refinements.

• Overview of LiquidJava – We introduced participants to LiquidJava using a 4-
minute video and a webpage [26] explaining the examples of the previous task.
Both resources were then available to be used within the remainder of the study. In
the rest of the study, participants used LiquidJava through an IDE extension created
for Visual Studio Code;

• Task 3: Find the error with LiquidJava – Similarly to Task 1, participants had to
find and fix the incorrect behaviour of the programs. However, for this task, they
were aided by the LiquidJava plugin. This task, paired with Task 1, intend to answer
RQ2. The exercises were the same in both tasks, but they were split into two sets
so that each participant could have different exercises in each task. Hence, half the
participants had one set of exercises for Task 1 and a different one for Task 3, and
the remaining half had the reverse set order. Therefore, the plain Java results serve
as a baseline for the LiquidJava results.

• Task 4: Annotate Java programs with LiquidJava – Participants were asked to
add LiquidJava annotations to three Java programs that targeted the LiquidJava fea-
tures of refinements on variables, fields, methods and classes. This part addresses
RQ3, and includes a final question about the difficulty of adding the annotations.

• Final Comments – Participants had the opportunity to express their thoughts on the
overall experience of using LiquidJava by sharing what they most liked and disliked
about the framework and whether they would use LiquidJava in their projects. This

1https://github.com/CatarinaGamboa/liquidjava-examples

https://github.com/CatarinaGamboa/liquidjava-examples
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overview aimed to answer the last research question, RQ4, and provide feedback
to improve the project.

The examples used in the different tasks are detailed in Sections 7.3 to 7.6, along with
the obtained answers and result discussion.

7.2 Participants

The study had 30 participants, the exact amount planned at the beginning of the study,
and their background information is summarized in Figure B.1. The registration was
disseminated through social media channels such as Twitter, Facebook and Instagram and
also through personalized emails to Java developers.

The main condition to participate in the study was familiarity with Java, and more
than 90% of the participants considered themselves Familiar or Very Familiar with Java.
The remaining participants, who considered themselves only Vaguely Familiar with Java,
were accepted in the study because they had already created test cases and used frame-
works to test Java programs (such as JUnit). From all the participants, 80% were Vaguely
Familiar or Not Familiar with refinement types which shows that despite their utility, re-
finement types are not widely known and used. The last background question asked if the
participant had previously contacted with LiquidJava, and only 3 participants answered
affirmatively, since they attended talks about the project but had never used it.

7.3 Interpreting Refinements without prior explanation

Since 90% of the participants had no previous contact with LiquidJava, and more than
80% were not familiar with refinement types, we wanted to understand if, without a prior
explanation, the added specifications were intuitive to use. Thus, the study included a
task with refinements examples that the participants needed to interpret and use in a cor-
rect and incorrect form. Specifically, we presented three code snippets with LiquidJava
refinements with an increasing difficulty level (as showed in Listing B.1), and asked the
participants to implement a correct and incorrect usage for each of the represented fea-
tures.

In Task 1, the participants had to assign a correct and incorrect value to the variable x,
which allowed a range of values representing the limits of the Earth surface temperature
according to NASA. The second task asked of the participants to implement a correct
and incorrect invocation of function1, where the second parameter depends on the first.
Finally, the last task presented a class protocol with three possible states and methods that
modelled the object state, and the participants were asked to create a MyObj object and
implement a correct and incorrect sequence of at least three invocations. The MyObj class
could represent a Vending Machine object with the three states sX, sY and sZ as Show



Chapter 7. Evaluation 62

Items, Item Selected and Paid, respectively. The anonymization of the states and the class
name were intentional to make the participants try to understand the refinements instead
of calling the methods according to their mental idea of how a vending machine works.

Figure B.2 shows the evaluation of the answers given by the participants. Each answer
was classified as Correct if both the correct and incorrect usage of the specification were
correct, Incorrect if, at least, one of the usages was incorrect, or Unanswered if the answer
was left blank. To the first question related to the variable value assignment, 86.7% of the
participants answered correctly. The remaining 4 participants understood the error when
the examples were explained and claimed that the error was a pure distraction and misread
the logical operators. The invocation of the annotated method had only one incorrect
answer (3.3%). In the last question, in which the class protocol was described using the
@StateRefinements, 46.7% of the answers were correct, and the remaining amount was
split into incorrect and blank answers, showing that this example is less intuitive and
harder to understand without a prior explanation, but still not impossible to understand.

Overall, refinement annotations in variables and methods are intuitive and easy to
understand. However, the annotations of classes and its methods with protocols are less
intuitive and, in half of the cases, the participants would need a previous explanation to
understand how this annotations could be used.

7.4 Using LiquidJava to Detect Bugs

This task aims to validate if using Java with Liquid Types makes it easier and faster to
find implementation errors in LiquidJava, compared with plain Java. To this end, we
chose four exercises with implementation errors that the participants had to find and fix,
firstly only looking to the plain Java code (Task 1: Find the error in plain Java) and
then with the help of LiquidJava and its plugin for VSCode (Task 3 - Find the error in
LiquidJava). Between both tasks, the participants had a small introduction to LiquidJava
with a short video, accessed the LiquidJava website and installed the LiquidJava plugin
on their computer.

Each exercise had a plain Java version and a LiquidJava version with the same imple-
mentation errors to allow us to compare the number of participants that found and fixed
the bug, as well as the time taken, in each version. Half the participants started with two
exercises in Task 1 and the other half used the same exercises with LiquidJava for Task
3. Therefore, one participant never used the same exercise in both tasks, avoiding taint-
ing the second task with previous knowledge of the solution, and allowing us to obtain a
plain Java baselines for every exercise. With this split, note that the maximum number of
answers to each version is now 15 since only half the participants viewed each exercise
version.

In both Task 1 and Task 3, we gathered the time spent in each exercise and the given
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answers. The answers were then evaluated into one of four possible categories: Correct,
Incorrect, Unanswered, and Compiler Correct. The last category, Compiler Correct, rep-
resents the answers that, despite not having any error detected by the LiquidJava compiler,
are not utterly correct according to the exercise.

The exercises and the results obtained are presented in Section 7.4.1 and the overall
discussion is in Section 7.4.2.

7.4.1 Exercises and Answers

The four exercises were split into two groups of similar difficulty, and each group is used
in a different task for each participant. The first exercises of each group represent prob-
lems with recursive methods and return values inside conditional branches. These exer-
cises are incorrect versions of fibonacci (Section 7.4.1.1), and sum (Section 7.4.1.2). The
second exercise of each group uses an external Java library whose methods contain an un-
derlying protocol that should be followed but is only described using documentation. The
client code of these exercises use the java.util.ArrayDeque class (Section 7.4.1.3) and
java.net.Socket class (Section 7.4.1.4). The modelling of each of these external classes
has already been presented in this document in Section 5.4.6.1 and Section 5.4.6.2, re-
spectively. The remainder of this section presents each of the exercises, the data collected
and a small discussion of the results.

7.4.1.1 Fibonacci Exercise

This exercise presents a recursive implementation of the method fibonacci that computes
the nth Fibonacci number. However, the code contains an implementations error in the
base case of the recursion, where the starting values of F(0)= 1 and F(1)= 1 are not
respected. Listing B.2 shows the method with the LiquidJava refinement annotations
according to the informal documentation. The plain Java version has the same Java code,
but without the annotations of lines 1,2, 10 and 11. The refinements were introduced to the
parameter and the method’s return, according to the Javadoc. The aliases were introduced
to give more meaningful names to the predicates and show another feature that can be
used in LiquidJava.

The answers and the time spent on the exercise in the plain Java and LiquidJava ver-
sions are plotted in Figure B.3. We can see that all the participants could find and fix
the exercise in LiquidJava, whereas in plain Java, only 73,3% found the error and 66,7%
were able to fix it. The answers accepted as Correct changed the return of the base case
to return 1, and all the different answers were determined as incorrect since they did not
fix the presented error. Additionally, in plain Java, 2 participants in total decided to skip
this question without answering the possible location of the bug or propose a fix.

The time spent on the Java version was, on average, smaller than the time spent in
LiquidJava. The average time spent in the plain Java exercise was of 2 minutes and
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52 seconds, while the time spent on LiquidJava was one of 3 minutes and 22 seconds,
reaching a difference of only 30 seconds. This result suggests that, since Fibonacci is a
popular exercise, participants are already used to its plain implementation, and when the
new refinements were added, they spent more time on understanding the different sections
of the code.

7.4.1.2 Sum Exercise

The sum exercise, presented in Listing B.3, contains a recursive method that should imple-
ment the sum of all numbers between 0 and the given parameter. However, it contains a
bug in the base case since the method returns 0 if the gotten parameter is 1. This exercise
was inspired by the recursion example presented in Refinement Types: A Tutorial [29].

Listing B.3 represents the LiquidJava version of the exercise, the plain version is,
again, similar but without the annotations for the refinements (lines 1 and 6). The informal
documentation does not specify any conditions to the parameter, leading to the omission
of its refinement. However, it specifies the return conditions that can be simplified into the
return refinement presented, using the same expression as in the refinement types tutorial.

The answers and the time spent in this exercise are plotted in Figure B.4. It is possible
to see that in the plain Java version, only one participant was unable to find and fix the bug,
while the 14 others were able to find the error, and 13 correctly fixed it. In the LiquidJava
version, every participant was able to locate the error, but only 7 participants were able to
fix it correctly, and the same number answered with Compiler Correct options.

The answers accepted as Correct adjusted the base case to one of the following ver-
sions: if(n <= 0) and if(n < 1). The answers considered Compiler Correct are the
ones that silenced the compiler error but are not correct according to the informal speci-
fication. Among these answers, 6 out of the 7 participants changed the base case’s return
value, changing it to return 1, while the other participant answered return Math.abs(

↪→ n).

The 46.7% of Compiler Correct answers suggests that the participants were more
focused on silencing the compiler error than on correcting the program according to the
informal specification. Additionally, we may relate the 40% of return 1 answers with
the Task 1 of these participants, which included the Fibonacci exercise where the correct
fix was changing the return line to return 1. This line of thought might indicate that
the participants were biased by the previous sections of the study and opted for the same
answer as they used in the beginning.

The time plot shown in Figure B.4 contains two similar distributions, with a shorter
average time in the LiquidJava version. In minutes, the participants spent 4 minutes and
30 seconds on average, finding and fixing the error in plain Java, whereas in LiquidJava,
they spent an average of 3 minutes and 32 seconds, being faster by almost 1 minute.
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7.4.1.3 ArrayDeque Exercise

This exercise presented a client code of the ArrayDeque class from the standard java.

↪→ util library. The class contains popular methods to add, remove and get elements
from an ArrayDeque object and these operations may depend on the number of elements
present on the deque, and if these dependencies are not respected, then exceptions arise.
Listing B.4 presents a client code that includes sequential invocations of methods on the
ArrayDeque. However, the invocation p.getLast() on line 9 produces an exception since
it is called when the object is empty.

The code presented in the LiquidJava version, includes the client of Listing B.4 and a
separate file with the modelling of ArrayDeque with the ghost variable size as shown in
Listing B.5 (with more methods than presented in Section 5.4.6.1).

Figure B.6 presents the results of the answers and the time spent in each version of the
exercise. In this case, all the participants were able to correctly find and fix the error in
both plain Java and in LiquidJava. There were multiple options to fix the code to prevent
the raising of the exception; the accepted answers included removing p.getLast() on
line 9, verifying if the queue is empty with if(!p.isEmpty) right before line 9, changing
the line to p.peekLast(), among others.

The average time that participants took in this exercise in LiquidJava (2 minutes and
56 seconds) was 45 seconds less than using plain Java (3 minutes and 41 seconds).

7.4.1.4 Socket Exercise

The last exercise uses the Socket class from the external library java.net. The class was
modelled as detailed before (Section 5.4.6.2) and a client method createSocket(...)

was created with incorrect usage of the methods order (Listing B.6). The error lies in
the invocation of socket.sendUrgentData(90), that was made before the socket being
connected to a server. The same client code was shown to participants in both Tasks 1
and 3. However, the code in Task 3 contained a file with the Socket class annotations of
states and the allowed state transitions between the methods.

Figure B.7 shows the evaluation of the answers and the time spent in the Socket exer-
cise. It is possible to see that only one participant was able to pinpoint the location of the
error while using Java, and no participant was able to fix the error correctly. Additionally,
we can also see that the percentage of blank answers was higher in this exercise than in all
others, since 40% to 46% of the participants decided to move forward without answering.

However, in LiquidJava, all the participants were able to find the error, and 46,7%
were able to fix the error correctly, while 53,3% silenced the error. The correct answer
to fix the client code, given by 7 participants, relied on the addition of the line socket.

↪→ connect(addr); between lines 8 and 9, where addr is the server address passed as
an argument. The remaining eight answers also introduced the invocation to the connect
method in the correct location but used the local address already used in the bind, which
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would lead to a socket bound and connected to the same address and therefore produce
an exception. Once again, the participants focused on silencing the error but did not try
to understand the meaning of the provided answer.

Regarding the time spent on this exercise, in the Java version the participants spent an
average of 5 minutes and 35 seconds, compared to the 4 minutes and 42 seconds spent
in the LiquidJava version, showing that the participants were faster by 52 seconds in
LiquidJava with a much higher rate of correct answers.

7.4.2 Discussion

With the results gathered from Task 1 and Task 3, we can conclude that LiquidJava con-
stantly helped the participants find the bugs present in the code since the percentage of
participants who found the bugs was always higher, or equal, in the LiquidJava version
when compared to the plain Java version. LiquidJava also helped the participants to fix
the bugs according to the error information provided. However, the participants focused
on silencing the errors, which lead to some answers that were only considered Compiler
Correct because the bug was not totally fixed.

The task of finding and fixing the bugs was faster in LiquidJava in all but one exercise.
The latter refers to the Fibonacci exercise, which may have had a shorter time because of
its popularity since most developers are familiar with its plain Java version. From all the
exercises, the one that benefited the most from the LiquidJava version was the Socket
exercise, where we moved from having only one participant finding the error in plain
Java to 100% in LiquidJava, and from no participant fixing the bug to 46,7% fixing it and
53,3% silencing the error. This means that LiquidJava is more useful when used in more
complex programs, with classes with protocols less known by developers.

Overall, LiquidJava helped the participants find and fix the bugs, and in some cases, it
helped them do it faster.

7.5 Adding LiquidJava Annotations

In Task 4, participants were asked to add LiquidJava annotations to the implemented code
according to the informal documentation written in the program as comments. In this
step, participants could use the website and the video as help in writing the refinements.

Participants had to annotate programs with increasing order of difficulty. The first
program relied only on the annotation of a variable with its bounds. The second program
expected the annotation of a method by specifying the parameters and return refinements.
Finally, the third program required the annotation of a class protocol and the class fields.
We presented an example of a correct usage of the refinement and another example for its
incorrect usage for each program to help the developers test their refinements.
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The participants shared their proposals for the annotation of each exercise, and we
evaluated them with the four categories used in the previous section, of Correct, Incorrect,
Unanswered and Compiler Correct. The results of the annotations are in Figure B.8 and
will be analysed along with each exercise below.

The first and more straightforward program is presented in Listing B.7 and contained
the simple task of restricting the value of the variable with an upper and lower bound,
which could be accomplished with the annotation: @Refinement("currentMonth >= 1

↪→ && currentMonth <= 12 "). Already in the first exercise, all the participants used
the website as a resource to look for the right syntax to use, and 100% of them annotated
the variable correctly.

Listing B.8 shows the method presented in the second exercise where participants
should add a refinement to the second parameter, changing the signature of the method
to public static int inRange(int a, @Refinement("b > a")int b), and refine the
return type of the method, adding the refinement @Refinement("_ >= a && _ <= b")

above the method.

Twenty-four of all participants were able to add the expected annotations leading to
80% of Correct answers. However, 20% only added the annotations to the parameter,
silencing the example error but not completing the exercise in its totality, and leading to
6 Compiler Correct answers.

The last exercise asked the participants to annotate the class TrafficLight (Listing B.9),
which uses RGB values (between 0 and 255) to define the light colour and follows the pro-
tocol defined by Figure B.9. The evaluation of this annotation was split into the addition
of the refinements to model the class protocol and the specification on the class private
fields.

100% of the participants were able to correctly model the class by declaring the start-
ing states and the state transitions allowed in each method. This constitutes a significant
increase in the understanding of the class protocols when compared to the first time the
participants tried to understand the protocol in Task 1, where half of the participants could
not interpret the class protocol.

However, only 43,3% of the participants annotated the class fields, and the remain-
ing participants did not add any refinement, leaving an incorrect assignment in the class
implementation. The participants who did not annotate the class fields probably misinter-
preted the exercise, not realising the need for these annotations.

After finishing introducing the annotations, the participants had to evaluate the ease
of the addition of the annotations from 0 - Very Difficult to 5 - Very Easy and the results
of the answers are presented in Figure B.10. All the participants considered that adding
the annotations was easy, and 60% even considered that it was very easy, concluding that
the refinements are simple to add to implemented code.
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7.6 Final Overview

At the end of the tasks we asked the participants about the overall experience of using
LiquidJava using three questions:

• What did you enjoy the most while using LiquidJava?

• What did you dislike the most while using LiquidJava?

• Would you use LiquidJava in your projects?

The first two questions were open-ended, and the different answers focused on diverse
aspects, as expected. To process the answers and capture their essence, we used a quali-
tative coding approach [54]. We started with the set of answers to each question, and we
used inductive coding to create the codes. With these codes, we reviewed all passages and
identified the main topics used within the answers, leading to a cohesive and systematic
view of the results.

The topics that the participants enjoyed about LiquidJava are presented in Figure B.11.
The participants mostly enjoyed the error reporting on the incorrect code, the use of state
refinements to model objects and the intuitive and non-intrusive syntax.

1. Error Reporting:"[...] the fact it reported un-compliances with the specifications";
"[with] refinement types we have an assurance that the program is logically consis-
tent at the time of coding."; "Helps to define the program’s logic and avoid future
errors";

2. State Refinements: "the state refinement it is very useful"; "Specification of states,
because enforcing correct state transitions in the implementations is tedious and
error-prone".

3. Syntax: "The simple syntax based on annotations", "Very intuitive syntax", "[the
refinements addition is] non-intrusive";

4. Plugin: "Excellent integration with VSCode", "Very well assisted by the custom vs
code extension";

5. Understandability: "Very intuitive", "Easy to understand in terms of semantics";

6. Useful: "Highly useful", "It helped me a lot to known which values/methods are
correct when I’m coding";

7. Resources: "Using the video and the examples it was easy to understand how the
refinements work", "The examples and the video were very illucidative";
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8. Flexibility: "I liked the flexibility of scenarios in which I could use LiquidJava",
"+1 to the diverse set of refinements that can be written in different parts of the
code".

All 30 participants answered the first question; however, only 26 answered the second
question regarding what they disliked the most about LiquidJava. The topics pointed by
the participants are represented in Figure B.12 and include eight answers that only stated
that there was nothing they disliked about LiquidJava. The remaining points they disliked
about LiquidJava involve the syntax of certain elements inside the refinements and some
plugin features. We present below a sample of the answers given for each topic:

1. Syntax: "[in the state refinement] repetition of this", "the usage of _ for the return
value";

2. Plugin features: "Improve the usability of the plugin -remove double quotes; - use
auto-complete inside the refinements", "not being able to correct multiple files at
the same time";

3. Not Intuitive: "Hard to understand without access to documentation, mainly DFA
protocols";

4. Error Messages: "Some error messages are not straight to the point";

5. Verbose: "Makes Java more verbose";

6. Other: "The state transition is a bit harder to get but paired with the given docu-
mentation is fine.","The installation process was not very user friendly".

The last question of the study asked the participants if they would use LiquidJava
in their projects, to which all the participants answered affirmatively, as can be seen in
Figure B.13. However, in the final suggestions, one participant declared that he would
only use it in critical parts of the project, and other two participants referred that they are
not currently using Java in any project but would like to have similar verifications in other
programming languages.

7.7 Study Conclusions

The research study focused on the usability of LiquidJava to verify Java programs. Thus,
it included tasks related to the understandability of LiquidJava, the usage of LiquidJava to
find and fix implementations bugs and the addition of LiquidJava annotations in Java code
in order to add a new layer of verification. This study had four main research questions,
and the six parts of the study aimed to answer them.
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The first research question (RQ1) inquired if refinements are easy to understand, and
Task 2 (Section 7.1) and 4 (Section 7.1) helped answer this question. From the inter-
pretation of refinements before an overview, we can assess that refinements on variables
and methods are intuitive and easy to understand at first sight, whereas the refinements
to model class protocols are more challenging to understand without a prior explanation
(Section 7.3). However, after a short video (4-minutes) and having access to a webpage
with examples, the participants were able to use and add LiquidJava annotations in the
code correctly. Moreover, the class protocol, which was less intuitive at the start, had
100% correct answers when the participants were asked to model the object state in Task
4 (Section 7.5). Therefore, we can conclude that refinements in variables and methods
are easy to understand without a prior explanation, and even though the features to model
classes are not very intuitive at first, they are easy to understand with few resources.

RQ2 aimed to identify if it is easier and faster to find implementation errors with Liq-
uidJava when compared with plain Java. The two main tasks that answer this question
are Task 1 (Section 7.1) and 3 (Section 7.1), where participants tried to find and fix im-
plementation errors in incorrect Java and LiquidJava code. The results from these tasks
show that LiquidJava helps developers find implementation bugs, since all participants
had a higher or equal rate of correct answers while using LiquidJava. As for fixing the
bugs, LiquidJava helped in all but one case, since developers focused on silencing com-
piler errors disregarding the reasoning behind the changes applied. As for the time taken
in each exercise, participants, in general, finished the LiquidJava exercises faster. The one
outlier to this, was the fibonacci exercise, probably because it is a traditional algorithm
that developers are used to see in its plain form and not with the annotations.

Overall, the exercise where LiquidJava helped developers the most was the Socket

client, where no participant was able to fix the error using plain Java, but with Liquid-
Java 46% could fix it correctly, and the remaining ones found the error and silenced it.
Therefore, to answer RQ2, LiquidJava helps identify the error location and to fix the er-
rors, but it seems more useful when applied to lesser-known classes and protocols than to
mainstream classes or simple code.

The third research question (RQ3) asked if it is hard to annotate a program with refine-
ments. The fourth study task answers this question by asking developers to annotate code
with refinements and then inquiring their opinion on the ease of the task (Section 7.5). For
the first part, the results to the task of adding refinements show that all participants were
able to add refinements to variables and to model class protocols, 80% were able to add
refinements to methods correctly (the remaining silenced the errors) and 43% were able
to introduce refinements in class fields (the remaining participants left the answer blank).
Therefore, participants were able to understand the concept of refinement and correctly
introduce them into the code. Moreover, the opinion of developers shows that they con-
sidered the task Easy or even Very Easy. Thus, we can conclude that refinements are easy
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to add to the code to model the desired behaviour of programs.
Finally, the last research question (RQ4) asked if developers are open to using Liquid-

Java in their projects. The fact that we got all the desired participants to the study, already
helps answering this question, since it shows that Java developers are open to participate
in studies to discover new approaches to improve their code quality. However, the last
question of the study is the one that gives us confidence that participants are open to us-
ing LiquidJava since we asked them if they would use LiquidJava in their projects, and
all participants answered affirmatively. Therefore, we are confident that participants find
LiquidJava accessible for its gains and are ready to use new useful verification tools.
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Chapter 8

Future Work

This chapter presents the remaining work on the thesis subject and future directions for
continuing the work.

Support for loops and aliasing

The type system for LiquidJava, presented in Chapter 5, only covers a subset of the Java
language. In order to support verification of real-world Java programs, we will need to ex-
pand support for while and for loops, possibly using loop invariants (à lá JML[36]). Previ-
ous language extensions with refinement types, for example for C[52] or TypeScript [62],
implement loop invariants to verify code with loops. However, one of the main chal-
lenges in this work is that Java does not support annotations on loops, only on classes,
fields, methods, parameters and local variables.

In order to support complex data structures (and eventually concurrent programs), it is
important to keep track of aliasing, especially in the verification of object state. A possible
solution for this is to implement permissions and ownership as uninterpreted functions,
similarly to Plaid [4] and ConSORT [59]. This approach would keep track of aliasing and
display errors when the permission assumptions are violated, similarly to how the Rust 1

borrow checker works.

A complete formalization of LiquidJava type checking

During this work, we presented the type system rules for all LiquidJava features except the
override methods from subclasses. Therefore, we intend to introduce the remaining type
rules but also formalize all the language. For the latter, we aim to formalize the addition
of refinements into a smaller subset of the Java language, the Featherweight Java [28], to
expedite the proofs of type preservation and progress.

1https://www.rust-lang.org/
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Improved Error Messages

Writing useful and clear compiler error messages is a challenge, shared by all compilers
and programming languages. Advanced type systems, with dependent and liquid types
in particular, are even more challenging because of the many context dependencies in the
types.

During the research study, participants found the error location very helpful, but none
of them spent more than 1 minute trying to understand the error message. This shows that,
despite our effort to provide helpful information for the cause of the error (Section 6.1.3),
the error messages are still not straightforward or user-friendly. Thus, we aim to improve
the error messages provided by LiquidJava and explore how they can be more helpful for
the users.

In LiquidJava, there are two types of errors: those that are in the refinements language
(inside the annotations) and those that are in the Java code that arise from using variables
and methods with the wrong type.

For the first ones, it is possible to improve the error messages by giving hints (e.g.,
"inside refinements use == instead of =", "alias RBG not found, maybe you meant RGB")
and better textual explanations (e.g., "state yellow is not defined in TrafficLight class"
instead of "function yellow not found").

As for the type errors raised by the verification process, one possible improvement is
the addition of a counter-example that shows why the verification could not be performed.
However, the quantity of information for one error would increase, which would probably
not be beneficial for the developer. Thus, in symbioses with the editor plugin, splitting
the error information into collapsed sections that the user could expand as desired could
be interesting.

Improve IDE integration

As introduced in Section 6.2, the IDE integration only implemented the presentation of
errors reported by the LiquidJava verifier. However, LSP allows the implementation of
other interesting features for the plugin, such as autocomplete using context information,
code highlighting of the elements used to create a verification condition, provide local
refinements on hovering a code element, among others. Furthermore, it is possible to
create personalized views on the editor that provoke custom events that are sent to the
language server. With this feature, it is possible, for example, to create a side menu
for LiquidJava where the errors are presented with a tree view where the error sections
have a main description and can be expanded to show the detailed information, similarly
to view panels implemented for other dependently type languages such as Lean [35] or
Coq [5]. Within a custom view, it would also be interesting to allow the users to see a
graph representation of the object state modelling, translating the method transitions to a
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representation of a state machine.
Besides the features that could be introduced to the plugin, it is essential to minimise

the time and RAM consumption during the verification. The current implementation of
the verification is unfeasible when the project size increases since every time a change
occurs in the document, the verification of the complete project is performed. Thus, it is
important to enhance the performance of the plugin by only verifying the changed code
instead of the overall project.

In the future, we would also like to create the client-side of other tools used for Java
development, such as Eclipse or IntelliJ, since both can communicate via LSP and are
popular amongst Java users.

Refinements Inference

Despite the research study results stating that the participants found it easy or very easy
to introduce the refinements in the code, it is still an additional task for developers. Thus,
we should try to minimize the effort of the developers in the annotation process as much
as possible by, for example, infering the refinements. To this end, we could implement
the Liquid Type inference algorithm presented in previous studies [53] and translate the
informal documentation into refinements with the help of existing frameworks such as
Toradocu [8], Daikon[20] or EvoSpex [43].
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Chapter 9

Conclusion

Type systems are one of the most popular software verification techniques to establish
guarantees regarding the behaviour of code. This popularity comes from the thin barrier
between verification and code development due to types being integrated into the pro-
gramming language, and type errors typically being shown at compile time, before the
program execution. However, a correctly typed program can still have multiple errors that
could be caught with stronger type systems, like refinement types. Refinement types have
been introduced in functional programming languages (e.g., Haskell and ML) but they are
yet to become popular in the mainstream developer community, despite their perceived
utility.

In this work, we introduced refinement types to the Java programming language, with
the goal to promote the wide usage of refinement types as a software verification tech-
nique. To integrate refinements into Java, we proposed the addition of @Refinement an-
notations with a new language for the refinements. The refinements language includes
features to model variables, methods, class fields and class states.

To reduce the cognitive load of the syntax for the refinements language, we proposed
two to three syntax options similar to Java for each feature we intended to support and
created an online survey to assess the preferable syntax among Java developers. The syn-
tax for refinements in variables, methods and class fields was decided using the answers
on the syntax preference of 50 java developers that participated in the survey.

We proposed a novel specification to model class state with refinements that allow
developers to specify multiple state sets and combine states with ghost properties. This
specification can enforce protocols in classes and successfully model state machines in
Java classes, like in the java.net.Socket class.

To verify the refinements in the Java code, we created the type checking rules for this
extension and translated the subtyping relationships into verification conditions which are
automatically verified using an SMT-Solver. If any of the verification conditions is not
provable, subtyping fails, and a refinement type error is displayed to the user.

We implemented these rules in LiquidJava, an extension of Java with Liquid Types,
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and integrated it into a plugin for Visual Studio code editor to improve the usability of
the system. Therefore, developers get the error reporting in real-time with the errors
underlined and accompanied with error messages while developing their programs.

To evaluate LiquidJava, we developed a research study focused on the usability of
LiquidJava as a software verification tool. Hence, we conducted the study with 30 partic-
ipants familiar with Java and asked them to perform tasks related to the interpretability of
refinements, the use of LiquidJava to find and fix errors, and the addition of refinements
into Java code. The study showed that refinements in variables and methods are very in-
tuitive since more than 86% of the participants could use the refinements of these features
without a prior introduction to refinement types. Although refinements in classes were
more difficult to understand without a prior explanation (only 46% of participants used
them correctly), they became easy to use after a 4-minute video and access to a website
with examples, since 100% of participants annotated the protocol refinements correctly.
Furthermore, the exercise with best results in detecting errors in LiquidJava when com-
pared to Java used the protocol of the class java.net.Socket, showing that LiquidJava
might be more useful when applied to lesser-known classes and protocols, reducing the
time spent on error localization. Finally, the study showed that participants found it easy
to annotate Java programs with refinements and all of them declared that they would use
LiquidJava in their projects.

It is expected that, from now on, LiquidJava can evolve towards a feature-complete
verification of the Java language, with enhanced usability inside editors and more insight-
ful error messages. Thus, leading to the use of LiquidJava in critical software products
and general scope projects to improve code quality.
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Liquid Type Checking Rules

Γ, {x : B, e}; ∆ ⊢ S valid

Γ;∆ ⊢ @Refinement(e) B x; S valid
(var-decl)

x : T ∈ Γ Γ;∆ ⊢ e : K Γ;∆ ⊢ K <: T Γ;∆, x : K ⊢ S valid

Γ;∆ ⊢ x = e; S valid
(var-assign)

x : T ∈ ∆
Γ;∆ ⊢ x : T

(var)

Γ ⊢ e : bool Γ, {α : int|e} ⊢ S1 valid Γ ⊢ S2 valid

Γ;∆ ⊢ ( if (e){S1} S2 ) valid
(if-then)

Γ ⊢ e : bool Γ, {α : int|e} ⊢ S1 valid Γ, {β : int|¬e} ⊢ S2 valid Γ ⊢ S3 valid

Γ;∆ ⊢ ( if (e){S1} else {S2} S3 ) valid
(ite)

Γ, {f : {xj : Tj|ej}
a,b∗−−→ {v : T |e}}, {expret : T |e} ⊢ S, S1 valid

Γ;∆ ⊢ @StateRefinement(from=ef1, to=et1)
...
@StateRefinement(from=efn, to=etn)
@Refinement(e) public T f (@Refinement(ej) Tj xj) {S1} S2 valid

(met-decl)

∗(a =
∨n

i=1 efi; b =
∨n

i=1 efi → eti)

Γ ⊢ e : T expret : U ⊢ Γ Γ ⊢ T <: U Γ ⊢ S valid;

Γ;⊢ return e; S valid
(return)
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Γ ⊢ yi : Ti Γ;∆ ⊢ obj : U Γ ⊢ U <: {β : U |a}
f : {xi : Ti}

a,b−→ {v : T | e} ∈ Γ Γ;∆, obj[a → b] ⊢ S valid

Γ;∆ ⊢ obj.f (yi) : {T |e[xi := yi]} S valid
(met-inv)



Appendix B

Figures and Listings from Evaluation

1 //1 − Variable Refinement
2 @Refinement("−25 <= x && x <= 45")
3 int r;
4

5 //2 − Function/Method Refinement
6 @Refinement("_ >= 0")
7 public static double function1(@Refinement("a >= 0") double a,
8 @Refinement("b >= a") double b){
9 return (a + b)/2;

10 }
11

12 //3 − Class Protocol Refinement
13 @StateSet({"sX", "sY", "sZ"})
14 public class MyObj {
15

16 @StateRefinement(to="sY(this)")
17 public MyObj() {}
18

19 @StateRefinement(from="sY(this)", to="sX(this)")
20 public void select(int number) {}
21

22 @StateRefinement(from="sX(this)", to="sZ(this)")
23 public void pay(int account) {}
24

25 @StateRefinement(from="sY(this)", to="sX(this)")
26 @StateRefinement(from="sZ(this)", to="sX(this)")
27 public void show() {}
28 }

Listing B.1: Variable refinement in LiquidJava and verification of its assignments.
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Figure B.1: Background information of the 30 participants selected to participate in the
study.
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Figure B.3: Answers correctness and duration of the Fibonacci exercise, in both versions.

1 @RefinementAlias("Nat(int x) {x >= 0}")
2 @RefinementAlias("GreaterEqualThan(int x, int y) {x >= y}")
3 public class Test1 {
4 /**
5 * Computes the fibonacci of index n
6 * @param n The index of the required fibonacci number (greater or equal to 0)
7 * @return The fibonacci nth number. The fibonacci sequence follows the formula
8 Fn = Fn−1 + Fn−2 and has the starting values of F0 = 1 and F1 = 1
9 */

10 @Refinement( "_ >= 0 && GreaterEqualThan(_, n)")
11 public static int fibonacci(@Refinement("Nat(n)") int n){
12 if(n <= 1)
13 return 0;
14 else
15 return fibonacci(n−1) + fibonacci(n−2);
16 }
17 }

Listing B.2: Fibonacci in LiquidJava.
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Figure B.4: Answers and time spent on the Sum exercise, in both versions.

1 @RefinementAlias("Nat(int x) {x >= 0}")
2 public class Test1 {
3 /** The sum of all numbers between 0 and n
4 * @param n
5 * @return a positive value that represents the sum of all numbers between 0 and n, or 0 if

↪→ n is negative */
6 @Refinement("Nat(_) && _ >= n")
7 public static int sum(int n) {
8 if(n <= 1)
9 return 0;

10 else {
11 int t1 = sum(n−1);
12 return n + t1;
13 }
14 }
15 }

Listing B.3: Sum exercise in LiquidJava.

1 //Exercise 2
2 public class Test2 {
3 public void createSocket(InetSocketAddress addr) throws IOException{
4 int port = 5000;
5 InetAddress inetAddress = InetAddress.getByName("localhost");
6

7 Socket socket = new Socket();
8 socket.bind(new InetSocketAddress(inetAddress, port));
9 socket.sendUrgentData(90);

10 socket.close();
11 }
12 }

Listing B.6: Client code of Socket class.
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1 public class Variable {
2 public static void main(String[] args) {
3 /* A month needs to have a value between 1 and 12*/
4 int currentMonth;
5

6 currentMonth = 13; //Error
7 currentMonth = 5; //Correct
8 }
9 }

Listing B.7: Variable to be annotated with LiquidJava and two assignments to test the
refinement.

1 public class Method {
2 /**
3 * Returns a value within the range
4 * @param a The minimum border
5 * @param b The maximum border, greater than a
6 * @return A value in the interval [a, b] (including the border values)
7 */
8 public static int inRange(int a, int b){
9 return a + 1;

10 }
11

12 public static void main(String[] args) {
13 inRange(10, 11); //Correct
14 inRange(10, 9); //Error
15 }
16 }

Listing B.8: Method to be annotated with LiquidJava and two invocations to test the
refinements.
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1 public class TrafficLight {
2

3 private int r;
4 private int g;
5 private int b;
6

7 public TrafficLight() {
8 r = 76; g = 187; b = 23;
9 }

10

11 public void transitionToGreen() {
12 r = 76; g = 187; b = 23;
13 }
14

15 public void transitionToAmber() {
16 r = 255; g = 120; b = 0;
17 }
18

19 public void transitionToRed() {
20 r = 230; g = 0; b = −1;
21 }
22 }
23 //Correct Test − different file
24 TrafficLight tl = new TrafficLight();
25 tl.transitionToAmber();
26 tl.transitionToRed();
27 tl.transitionToGreen();
28 tl.transitionToAmber();
29

30 //Incorrect Test − different file
31 TrafficLight tl = new TrafficLight();
32 tl.transitionToAmber();
33 tl.transitionToRed();
34 tl.transitionToAmber();
35 tl.transitionToGreen();

Listing B.9: Java class to introduce class refinements that follow a protocol.
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1 public class Test2 {
2 public static void main(String[] args) throws IOException{
3 ArrayDeque<Integer> p = new ArrayDeque<>();
4 p.add(2);
5 p.remove();
6 p.offerFirst(6);
7 p.getLast();
8 p.remove();
9 p.getLast();

10 p.add(78);
11 p.add(8);
12 p.getFirst();
13 }
14 }

Listing B.4: Client code that uses the ArrayDeque class.

1 @ExternalRefinementsFor("java.util.ArrayDeque")
2 @Ghost("int size")
3 public interface ArrayDequeRefinements<E> {
4

5 public void ArrayDeque();
6

7 @StateRefinement(to="size(this) == (size(old(this)) + 1)")
8 public boolean add(E elem);
9

10 @StateRefinement(to="size(this) == (size(old(this)) + 1)")
11 public boolean offerFirst(E elem);
12

13 @StateRefinement(from="size(this) > 0", to = "size(this) == (size(old(this)))")
14 public E getFirst();
15

16 @StateRefinement(from="size(this) > 0", to = "size(this) == (size(old(this)))")
17 public E getLast();
18

19 @StateRefinement(from="size(this)> 0", to="size(this) == (size(old(this)) − 1)")
20 public void remove();
21

22 @Refinement("_ == size(this)")
23 public int size();
24

25 }

Listing B.5: Refinements to model size of ArrayDeque.

Figure B.5: ArrayDeque Exercise.
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Figure B.6: Answers and time spent on the ArrayDeque exercise, in both versions.
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Figure B.7: Answers and time spent on the Socket exercise, in both versions.
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Figure B.9: Protocol of the TrafficLight that must be followed to the annotation.
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Figure B.10: Participants’ answers to the ease of writing the specification with Liquid-
Java.

Error
Reporting

State
Refinements

Syntax Plugin Understand-
ability

Usability Useful Resources Flexibility

Key Topics

0

2

4

6

8

10

12

Nu
m

be
r o

f A
ns

we
rs

Key topics of answers to 
"What did you enjoy the most about LiquidJava?"
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