
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Usability Barriers for Liquid Types
(Summary of Published Work)
CATARINA GAMBOA, Carnegie Mellon University, USA and LASIGE, University of Lisbon, Portugal
ABIGAIL REESE, Carnegie Mellon University, USA
ALCIDES FONSECA, LASIGE, University of Lisbon, Portugal
JONATHAN ALDRICH, Carnegie Mellon University, USA

Extended Abstract
Liquid types [4] extend traditional type systems with logical predicates that allow developers to
express complex properties in different applications. For example, they have been used to track
data between different layers in MVC applications in Haskell [2], model typestate protocols in
Java [1], and track the semantics of database queries in Rust [3]. Despite their expressive power
and implementation in different languages, the general developer community has not yet adopted
liquid types, which raises the question of the usability barriers to adopting and using liquid types.
In this paper, we present a study with 19 developers with different levels of expertise in using

LiquidHaskell [5], the most mature implementation of liquid types now. Twelve developers were
new to liquid types but familiar with the target language, while seven were experienced users who
had used LiquidHaskell across different application areas. We used different qualitative research
methods with these developers, including interviews, observations, retrospectives, and think-aloud
protocols, depending on their expertise and the projects they could show us. This study identified
nine barriers to adopting liquid types, spanning three themes: developer experience, scalability
challenges with complex and large codebases, and understanding the verification process.
Verification barriers come from the unclear divide between the verification layer and the pro-

gramming language, confusing verification features in liquid types, and the lack of familiarity with
proof engineering. These challenges make it difficult for developers without a formal verification
background to understand the verification process and how to use it effectively. The developer
experience barriers compound the difficulties in understanding the verification process, since there
is limited IDE support and learning resources, and the error messages can be unhelpful in diagnos-
ing the problems. Setting up and installing the tools are also challenges that prevent developers
from even starting to use liquid types. Finally, scalability challenges arise when working with large
and complex codebases, where the verification often becomes slow, and internally, the SMT solver
has limitations for certain types of properties. Additionally, the mix of automation and manual
flexibility and the opaque use of the SMT solver make developers unsure of what is necessary to
prove properties.
The barriers identified in this study can also be seen in other implementations of liquid types

and even other verification techniques. Therefore, by addressing these usability barriers, we can
enable more developers to adopt these techniques and create more robust and reliable software.
This paper was recently published at PLDI 2025 (https://dl.acm.org/doi/10.1145/3729327) and

brings together topics on programming languages, software engineering, and human-computer
interaction to create a comprehensive view of the usability challenges to the broader adoption of
liquid types.

Authors’ Contact Information: Catarina Gamboa, Carnegie Mellon University, Pittsburgh, USA and LASIGE, University of
Lisbon, Lisbon, Portugal, cvgamboa@fc.ul.pt; Abigail Reese, Carnegie Mellon University, Pittsburgh, USA, aereese@andrew.
cmu.edu; Alcides Fonseca, LASIGE, University of Lisbon, Lisbon, Portugal, amfonseca@fc.ul.pt; Jonathan Aldrich, Carnegie
Mellon University, Pittsburgh, USA, jonathan.aldrich@cs.cmu.edu.

HTTPS://ORCID.ORG/0000-0002-6995-7340
HTTPS://ORCID.ORG/0009-0008-9971-8499
HTTPS://ORCID.ORG/0000-0002-0879-4015
HTTPS://ORCID.ORG/0000-0003-0631-5591
https://dl.acm.org/doi/10.1145/3729327
https://orcid.org/0000-0002-6995-7340
https://orcid.org/0009-0008-9971-8499
https://orcid.org/0000-0002-0879-4015
https://orcid.org/0000-0003-0631-5591


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Catarina Gamboa, Abigail Reese, Alcides Fonseca, and Jonathan Aldrich

References
[1] Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and Alcides Fonseca. 2023. Usability-Oriented

Design of Liquid Types for Java. In International Conference on Software Engineering (ICSE). IEEE, 1520–1532. https:
//doi.org/10.1109/ICSE48619.2023.00132

[2] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ranjit
Jhala. 2021. STORM: Refinement Types for Secure Web Applications. In Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association, 441–459. https://www.usenix.org/conference/osdi21/presentation/
lehmann

[3] Nico Lehmann, Cole Kurashige, Nikhil Akiti, Niroop Krishnakumar, and Ranjit Jhala. 2025. Generic Refinement Types.
Proc. ACM Program. Lang. 9, POPL (2025), 1446–1474. https://doi.org/10.1145/3704885

[4] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Programming Language Design and
Implementation (PLDI). ACM, 159–169. https://doi.org/10.1145/1375581.1375602

[5] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: experience with refinement types in the real world. In
ACM SIGPLAN symposium on Haskell. ACM, 39–51. https://doi.org/10.1145/2633357.2633366

https://doi.org/10.1109/ICSE48619.2023.00132
https://doi.org/10.1109/ICSE48619.2023.00132
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1145/3704885
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2633357.2633366

	Abstract
	References

